Approach to Sustainability

Developing the Baseline for Emissions Modelling

Purpose and Process

Purpose

 To confirm the recommended approach to emissions modelling for the SGA programme, including defining the Baseline Scenario

Process

- SGA consideration of issues and options
- Liaison with AT and NZTA sustainability teams (6/8/19)
- Recommended Approach

General Approach to Emissions Modelling

- Use the VEPM model to estimate emissions rates (kg/VKT by vehicle speed) for current and future years (noting rates are forecast to reduce based on current and assumed future vehicle fleet changes)
- Apply VEPM rates to transportation models (VKT by link speed) to estimate emissions per peak period, aggregated to average day
- Model emissions generation only, not dispersion
- Assess the impact of the transport intervention by comparing Scenarios:
 - Existing: Current situation for reference (2016 or 2018 model)
 - Baseline: A future without the recommended intervention
 - Option: A future the proposed transport intervention
- Assess future via short, medium and long term forecasts: 2028, 2038, 2048 forecast years
- Sensitivity test long-term results with shorter-term rates, to separately identify the impact of the assumed future fleet changes

Required Inputs to Transport Model Scenarios

- Key inputs to the scenarios are:
 - Land use/demographic inputs for each forecast year
 - Future transport system assumptions
 - Economic/policy assumptions (e.g. fuel price, public transport fares, Travel Demand Management (TDM) policy impacts on travel etc)
- Impact of the Transport Interventions:
 - Directly influences travel choices and patterns (e.g. VKT)
 - Directly influences network performance (e.g. speed)
 - Directly or indirectly can influence land use patterns (through enabling capacity or system performance)
 - Unlikely to influence economic/policy inputs at SGA project or programme level

Issues and Context

- The greenfield growth has been signaled in the AUP, and the form defined in some locations through Structure Plans
- Decisions on releasing growth sit with Auckland Council, informed by transportation needs or impacts
- SGAs role to protect corridors that allow future implementation of the identified preferred transport system
- SGA approach therefore to get best outcomes for the planned growth, not to assess the value of the growth itself
- The transport networks are being design for long-term with both planned greenfield and brownfield growth assumed
- Land use and transport planning is being progressed in an integrated way for the desired, integrated outcomes (i.e. non-desired networks or land use are not being actively designed as a 'counter-factual')
- 'Baselines' have been defined for SGA as including full planned growth for:
 - economic evaluation
 - The 'existing environment' definition for option assessment and AEE

Measures for Scenario Comparison

Regional or area totals

- ✓ More useful to understand net impact on emissions
- not useful to compare between options with different levels of growth

Per-Capita Values

- ✓ Can compare between scenarios with different levels of growth
- sub-area comparators can be biased by location in regard to local vs through traffic

- ▶ Both measures have strengths and weaknesses
- Use both as appropriate

Options for Baseline Transport inputs

The Option scenario will include the recommended transport system, however there are options for treatment of the Baseline comparator:

- Use a future Do Minimum network for the Baseline. As per BCR and AEE assessments, this would typical comprise the existing network plus only committed projects
- Use an Alternative future network. This could be developed around 'previous' policy settings/standards or 'traditional' network (e.g. dominated by roads for personal car travel)
- 3. Use the **existing** scenario (e.g. a 2016 model (or 2018 if available)

Assessment of Baseline Transport Options

Option 1 (Do Minimum)

- Easy to define
- ✓ Spatially comparable to the fully-developed 'Recommended Option' scenario
- Consistent with EEM and AEE approaches, but
- May not fully demonstrate the value of the recommended networks, relative to 'traditional' approaches
- Somewhat artificial/unrealistic situation with full growth development on a Do Minimum network

Option 2 (Alternative Network)

- Could better demonstrate the value of the recommended network, relative to a 'traditional' approach
- Spatially comparable to the fully-developed 'Recommended Option' scenario, but:
- Hard to define and requires additional design and assessment of an alternative network
- Arbitrary and contrary to current objectives, policies, expectations, standards
- Outcomes will be sensitive to the design of the alternative network

Option 3: Existing situation

- Easy to measure, high level of certainty and not sensitive to assumptions :
- Not comparable with future vehicle fleet (although this could be addressed by using future fleet assumptions on current-day transport network)
- Existing developed areas may not be spatially comparable with growth areas

- All options have strengths and weaknesses
- Option 2 not preferred as requires additional analysis for limited value
- Recommend use mainly Option 1 but with Option 3 used for reference

Options for Land Use inputs to Scenarios

- Use a common regional population total for both Baseline and Option scenarios that includes all planned growth. Sensitivity testing of alternative location/density can be included
- 2. Use **variable** land use inputs with full planned growth for the Option scenario but constrained growth for the Baseline

Assessment of Baseline Land Use Options

Option 1 (Common Land Use)

- Can directly compare outcomes
- Evaluates transport intervention, not growth
- Evaluation is contained within Auckland Region
- Is consistent with EEM and AEE approaches, but
- Assumes growth is immutable, which may not reflect enabling/influencing role of transport on growth

Recommend Option 1 (Common Land Use) for the Modelling Baseline

Sensitivity test alternative land use scenarios that retain same regional growth but alternative forms of employment location and housing density

Option 2 (Variable Land Use Inputs)

- Makes direct comparison of outputs very difficult (emissions would be compared per capita rather than in absolute terms
- Assumes any constrained growth occurs 'elsewhere' in NZ or globally, beyond scope of the
 evaluation
- Could effectively include impacts of growth, rather than the transport intervention
- Ability to predict the required alternative and constrained baseline land use growth is weak

Suggested Baseline

- Use total emissions as key indicator to compare future scenarios but
 - also use per-capita values to benchmark against current day network and other areas (controlling for changes in fleet composition)
 - Sensitivity test with and without changes related to future vehicle fleet assumptions
- Assume Common land use for Baseline and Option scenarios, comprising:
 - Full development of Greenfield areas with total yield as per Council forecasts
 - Regional growth as per agreed Auckland Forecasting Centre forecasts
 - Sensitivity test with revised spatial allocations, retaining regional total:
 - Centralised employment (reduced in growth areas)
 - Dispersed density (rather than Structure Plan focus around stations)
- Use a 'Do Minimum' transport network as the Baseline Network, comprising:
 - existing network
 - Plus committed projects in growth area
 - Plus 'ATAP3' assumptions outside growth areas
 - Assumed local and collector roads plus reduced speeds on rural roads in greenfield growth areas
- Use common 'ATAP3' economic and policy inputs to models

