OPOTIKI DISTRICT COUNCIL Appendix 1 # POLICY ON EARTHQUAKE PRONE BUILDINGS 7560/397/00 A Building Risk Assessment Earthquake Prone Buildings | Address 108 St Sh St - 0 | oc office | | |--|--|-------| | Lot No: | Building Consent No: | Score | | Users1. What is the maximum number of users at any one any one time | 100 + people (H) = 10
Less than 100 people (L) = 7 | 7 | | 2. What is the predominant age group of the building users? | Children or Infants (H) = 10
Adults (L) = 3 | 3 | | 3. What is the general capability of the building users? | Mentally handicapped/immobile (H) = 10
Physically handicapped but mobile (H) =
6
Normal (L) = 3 | 3 | | Usage of the building | | | | 4. What is the sleeping activity rating for the | Hospitals Care Institutions, Motels. Hotels, Hostels, Boarding houses, Boarding schools, Halls (H) = 10 Multi-unit dwellings, flats, apartments + Residential accommodation above shops | 0 | | building in terms of the building code? | (L) = 3 | | | 5. Is the building used for any of the following activities? | | 0 | | a. Education | Children (H) = 10 Adults (L) = 5 | | | b. Old people's home | Geriatric (H) = 10 Mobile (L) = 5
Bedridden (H) = 10 Mobile (L) = 8 | | | c. Hospital (private or public) | Bedridden (H) = 10 Mobile (L) = 5 Bedridden (H) = 10 Mobile (L) = 5 | | | d. Residential institution | >100 people (H) = $10 < 100 (L) = 3$ | | | e. Place of Assembly | >20 people (H) = 7 <5 (L) = 3 | | | f. Hotels and motels | >20 people (H) = 9 <5 (L) = 5 | | | g. Backpackers and Home staysh. Attached multi-unit buildings | >5 apartments (H) = $7 - 3 - 5$ (L) = $5 - 5 - 5$ | | | 6. What is the crowd, working, business or storage | Manufacturing of combustible materials, cinemas, schools, colleges, libraries, restaurants (when occupant loads exceed 100)(H) = 10 Manufacturing non-combustible materials, pack houses, banks, | 2 | | activity for the building in terms of the building code? | hairdressers, dentists, doctors, police stations, professional services, Cinemas, churches, court rooms, halls, day care centres, gyms, museums, eating places (when occupant loads up to 100) (L) = 3 |) | | Building Characteristics | | | | 7. Does the building have common walls with others? | >1 (H) = 5 <1 (L) = 3 | 3- | 12 3 4 5 6 7 8 9 includes basements 8. How many storeys does the building have? 2 = 5 add 5 for every subsequent storey **OPOTIKI DISTRICT COUNCIL** #### POLICY ON EARTHQUAKE PRONE BUILDINGS | 9. Any historic clarification or significance? | Yes = 2 | 0 | |---|-------------------------------|-----| | 10. Is the building in the inner city, in a known geothermal area or previous seismic activity? | Yes (H) = 10 | 10 | | 11. What is the age and condition of the building? e.g. Pre 1940 = 10 Pre 1965=8 | Assign score 1-10 accordingly | .) | | 12. Are there any other factors to be considered? e.g. Parapets, verandahs, attachments or adornments | Assign score 1-10 accordingly | 0 | | Total Score (out of approx 100) Note: < 40 Low Risk 40-60 = Moderate Risk) >60 = High Risk | (5) | 30 | 1980's - Brick Vencer - Krackey - Timber Frame #### Table IEP-2:Initial Evaluation Procedure - Step 2 | | Nome | | <i>VI</i> | | | |----------------------|-----------------------------|---|---|--|--| | lullaing
.ocatior | n Name | "Time of | True | 4_ | Ref. 7560/347 | | | n Considered | : a Longitudinal | TOBYTIAN | verse | = PJ = 1 = 1. | | Choose | worse case if cl | ear at start. Complete | IEP-2 and IEP-3 fo | r each if in doubt) | Date 791(/// | | tep 2 - | Determinati | on of (%NBS) _b | | | | | 2.1 | Determine n | ominal (%NBS) = | (%NRS) | | | | | | | (/ / · · · – / / / / / / / / / / / / / / | | | | a) | Date of Design | and Seismic Zone | Pre 1935 | | tick as appropriate See also notes 1, 3 | | | | | 1935-1965 | | Gee also notes 1, 5 | | | | | 1965-1976 | Seismic Zone; A | <u> 188</u> | | | | | | В | | | | | | 4070 4000 | C | | | | | | 1976-1992 | Seismic Zone; A
B | See also note 2 | | | | | | C | (1.00)
(1.00) | | | | | 1992-2004 | | 815 | | | | | | | | | b) 8 | Soil Type | From NZS1170.5: | 2004 (1343 | A or B Rock | 52 h (6 ₂ -) | | | | 7 TOTA REST 170,5: | 2004, GI 3.1.3 | C Shallow Soil | | | | | | | D Soft Soil | | | | | B | | E Very Soft Soil | <u> </u> | | | /for 199 | From NZS4203:19
2 to 2004 only and o | | a) Rigid | Market Comments | | | (101 132 | 2 to 2004 only and o | my n known; | b) Intermediate | Section 1 | | | | | | | 1 | | | stimate Period | , 7 | | | Seconds | | Can | use following: | $T = 0.09h_0^{0.75}$ | for moment-resisting | concrete frames | | | | | $T = 0.14 h_n^{0.75}$ | for moment-resisting | | | | | | $T = 0.08h_n^{0.75}$ | for eccentrically brace | ed steel frames | | | | | $T = 0.06h_0^{0.75}$ | for all other frame stru | | | | | | $T = 0.09 h_n^{0.75} / A_c^{0.5}$
$T \le 0.4 sec$ | for concrete shear wa
for masonry shear wa | | | | | | , <u>3</u> 0.4360 | • | | the uppermost seismic weight or mass | | | | | $A_c = \sum A_i(0.2 + i)$ | _ | | | | | | | nal shear area of shear wall i in the | | | | | | | ear wall i in the first storey in the dir
t / _{wi} / h _n shall not exceed 0.9 | rection parallel to the applied forces, in m | | ٠١. ٨٨ | (100) | | | | - A | | a) (9 | 6NBS) _{nom} detei | mined from Figure 3 | 3.3 | | (%NBS) _{nom} | | Note 1: | For buildings of | designed prior to 1965 | and known to be | | | | | designed as pr | ublic buildings in accor | rdance with the cod | e with the | | | | For buildings d | ultipy (%NBS) _{nom} by 1
lesigned 1965 - 1976 a | .20.
and known to be | | | | | designed as pu | ublic buildings in accor | rdance with the code | e | | | | of the time, mu | Iltiply (%NBS) _{nom} by 1 | .33 - Zone A | | | | | | 1 | .2 - Zone B | | | | | Enr rainforced | concrete buildings des | signed between | | | | Note 2: | 1976-84 multip | ly (%NBS) _{nom} by 1.2 | | | | | | 1976-84 multip | ly (%NBS) _{nom} by 1.2
esigned prior to 1935 i | multiply | | (%NBS) _{nam} | #### Table IEP-2:Initial Evaluation Procedure - Step 2 continued | Table IEP-2 Initial Evaluation Procedure Step 2 continued | Page 3 | |---|--------| | 2.2 Near Fault Scaling Factor, Factor A If T ≤ 1.5sec, Factor A = 1 | | | a) Near Fault Factor, N(T,D) (from NZS1170.5:2004, Cl 3.1.6) | | | b) Near Fault Scaling Factor = 1/N(T,D) Factor A | | | 2.3 Hazard Scaling Factor, Factor B | | | a) Hazard Factor, <i>Z, for site</i>
(from NZS1170.5:2004, Table 3.3) | | | b) Hazard Scaling Factor For pre 1992 = 1/Z For 1992 onwards = Z ₁₉₉₂ /Z | | | (Where Z 1992 is the NZS4203:1992 Zone Factor from accompanying Figure 3.5(b)) | | | 2.4 Return Period Scaling Factor, Factor C | | | a) Building Importance Level
(from NZS1170.0:2004, Table 3.1 and 3.2) | | | b) Return Period Scaling Factor from accompanying Table 3.1 Factor C | | | 2.5 Ductility Scaling Factor, D | | | a) Assessed Ductility of Existing Structure, μ (shall be less than maximum given in accompanying Table 3.2) | | | b) Ductility Scaling Factor For pre 1976 = k_{μ} For 1976 onwards = 1 | | | (where k_{μ} is NZS1170.5:2004 Duclility Factor, from accompanying Table 3.3) | | | 2.6 Structural Performance Scaling Factor, Factor E | | | a) Structural Performance Factor, S p from accompanying Figure 3.4 | | | b) Structural Performance Scaling Factor = 1/S _p Factor E | | | 2.7 Baseline %NBS for Building, (%NBS) _b (equals (%NSB) _{nom} x A x B x C x D x E | | ## Table IEP-3: Initial evaluation procedure - Step 3 | ole IEP-3 Initial Evaluation Proced | dure Step 3
<u>o 1; Table IEP - 2 for Step 2; Table I</u> . | 50.46.0 | | Page | |--|---|--|--|--| | uilding Name ocation rection Considered: a) Longitudinal | ST JOHNS T | er - 4 for Step | Ref. 7 Sk | 0/317 | | Choose worse case if clear at start. Complete i | EP-2 and IEP-3 for each if in doubt) | | Date 29 | 7 / 4 | | tep 3 - Assessment of Performance A
(Refer Appendix B - Section B3.2) | Achievement Ratio (PAR) | | | | | Critical Structural Weakness | Building
Score | Effect on | Structural Pe | rformance | | 3.1 Plan Irregularity | 00016 | (Choose | a value - Do not i | nterpolate) | | Effect on Structural Performance | | Severe | Significant | Insignificant | | Comment | Factor A | 0.4 max | 0.7 | 1 | | 3.2 Vertical Irregularity | | | | | | Effect on Structural Performance | 126 A marie Managaria II | Severe | Significant | Insignificant | | Comment | Factor B | 0.4 max | 0.7 | 1 | | 3.3 Short Columns Effect on Structural Performance | | 0 | 0::: | 1 | | Errest on Structural Performance | Factor C | Severe
0.4 max | Significant
0.7 | Insignificant | | Comment | Control and Administration of the Control and | U.4 max | 0.7 | 1 | | 3.4 Pounding Potential (Estimate D1 and D2 and set D = the le | ower of the two er = 1 A H | i=1 f= : : - | 1 | | | a) Factor D1: - Pounding Effect Select appropriate value from Table Note: Values given assume the building has a fr | ame structure. For stiff buildings (| as with char | walls) the effect | | | Select appropriate value from Table Note: Values given assume the building has a frof pounding may be reduced by taking the | co-efficient to the right of the value | eg with shear
e applicable to | walls), the effect
o frame buildings | i. | | Select appropriate value from Table Note: Values given assume the building has a frof pounding may be reduced by taking the | ame structure. For stiff buildings (
e co-efficient to the right of the value
Factor D1 | eg with shear
e applicable to
Severe | walls), the effect
of frame buildings
Significant | i. | | Select appropriate value from Table Note: Values given assume the building has a from the pounding may be reduced by taking the stable for Selection of Factor D1 | Factor D1 | e applicable to | o frame buildings | i | | Select appropriate value from Table Note: Values given assume the building has a frof pounding may be reduced by taking the Table for Selection of Factor D1 Alignment of | Factor D1 | Severe
0 <sep<.005h< td=""><td>Significant
.005<sep<.01h< td=""><td>Insignificant
Sep>.01H</td></sep<.01h<></td></sep<.005h<> | Significant
.005 <sep<.01h< td=""><td>Insignificant
Sep>.01H</td></sep<.01h<> | Insignificant
Sep>.01H | | Select appropriate value from Table Note: Values given assume the building has a frof pounding may be reduced by taking the Table for Selection of Factor D1 Alignment of Fic. b) Factor D2: - Height Difference Effect Select appropriate value from Table | Factor D1 Separation f Floors within 20% of Storey Height | Severe
0 <sep<.005h
0.7</sep<.005h
 | Significant
.005 <sep<.01h
0.8</sep<.01h
 | Insignificant
Sep>.01H
1 | | Select appropriate value from Table Note: Values given assume the building has a frof pounding may be reduced by taking the Table for Selection of Factor D1 Alignment of Fic. b) Factor D2: - Height Difference Effect Select appropriate value from Table | Factor D1 Separation f Floors within 20% of Storey Height | Severe
0 <sep<.005h
0.7</sep<.005h
 | Significant
.005 <sep<.01h
0.8</sep<.01h
 | Insignificant
Sep>.01H
1 | | Note: Note: Values given assume the building has a frof pounding may be reduced by taking the Table for Selection of Factor D1 Alignment of Fig. B) Factor D2: - Height Difference Effect Select appropriate value from Table | Separation of Floors within 20% of Storey Height sors not within 20% of Storey Height | Severe 0 <sep<.005h 0.4="" 0.7="" severe<="" td=""><td>Significant .005<sep<.01h .005<sep<="" 0.7="" 0.8="" significant="" td=""><td>Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H</td></sep<.01h></td></sep<.005h> | Significant .005 <sep<.01h .005<sep<="" 0.7="" 0.8="" significant="" td=""><td>Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H</td></sep<.01h> | Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H | | Note: Note: Values given assume the building has a frof pounding may be reduced by taking the Table for Selection of Factor D1 Alignment of Fig. B) Factor D2: - Height Difference Effect Select appropriate value from Table | Factor D1 Separation f Floors within 20% of Storey Height pors not within 20% of Storey Height | Severe
0 <sep<.005h
0.7
0.4</sep<.005h
 | Significant .005 <sep<.01h 0.7<="" 0.8="" td=""><td>Insignificant Sep>.01H 1 0.8</td></sep<.01h> | Insignificant Sep>.01H 1 0.8 | | Select appropriate value from Table Note: Values given assume the building has a from pounding may be reduced by taking the Table for Selection of Factor D1 Alignment of Fic. b) Factor D2: - Height Difference Effect Select appropriate value from Table Table for Selection of Factor D2 | Separation Separation f Floors within 20% of Storey Height pors not within 20% of Storey Height Factor D2 Height Difference > 4 Storeys Height Difference < 2 Storeys Height Difference < 2 Storeys Factor D | Severe
0 <sep<.005h
0.7
0.4
Severe
0<sep<.005h
0.7
1
(Set D = set D = 1.0 i</sep<.005h
</sep<.005h
 | Significant 0.05 <sep<.01h .005<sep<.01h="" 0.7="" 0.8="" 0.9<="" significant="" td=""><td>Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H 1 1 1 1 1 D2 or</td></sep<.01h> | Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H 1 1 1 1 1 D2 or | | Note: Note: Values given assume the building has a frof pounding may be reduced by taking the Table for Selection of Factor D1 Alignment of Fig. B) Factor D2: - Height Difference Effect Select appropriate value from Table | Separation Separation f Floors within 20% of Storey Height pors not within 20% of Storey Height Factor D2 Height Difference > 4 Storeys Height Difference < 2 Storeys Height Difference < 2 Storeys Factor D | Severe
0 <sep<.005h
0.7
0.4
Severe
0<sep<.005h
0.7
1
(Set D = set D = 1.0 i</sep<.005h
</sep<.005h
 | Significant 0.05 <sep<.01h .005<sep<.01h="" 0.7="" 0.8="" 0.9="" 1<="" significant="" td=""><td>Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H 1 1 1 1 1 D2 or</td></sep<.01h> | Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H 1 1 1 1 1 D2 or | | Note: Note: Values given assume the building has a front pounding may be reduced by taking the alignment of Factor D1 Alignment of Factor D2: - Height Difference Effect Select appropriate value from Table Table for Selection of Factor D2 Table for Selection of Factor D2 | Separation Separation f Floors within 20% of Storey Height pors not within 20% of Storey Height Factor D2 Height Difference > 4 Storeys Height Difference < 2 Storeys Height Difference < 2 Storeys Factor D | Severe
0 <sep<.005h
0.7
0.4
Severe
0<sep<.005h
0.4
0.7
1
(Set D = set D = 1.0 i</sep<.005h
</sep<.005h
 | Significant .005 <sep<.01h .005<sep<.01h="" 0.7="" 0.8="" 0.9="" 1="" and="" d1="" if="" lesser="" no="" of="" of<="" prospect="" significant="" td=""><td>Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H 1 1 1 D2 or pounding)</td></sep<.01h> | Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H 1 1 1 D2 or pounding) | | Note: Note: Values given assume the building has a front pounding may be reduced by taking the alignment of Factor D1 Alignment of Factor D2: - Height Difference Effect Select appropriate value from Table Table for Selection of Factor D2 Table for Selection of Factor D2 | Separation Factor D1 Separation f Floors within 20% of Storey Height cors not within 20% of Storey Height Height Difference > 4 Storeys Height Difference 2 to 4 Storeys Height Difference < 2 Storeys Factor D and Slide threat, liquefaction etc. Factor E | Severe 0 <sep<.005h (set="" 0.4="" 0.5="" 0.7="" 0<sep<.005h="" 1="" d="1.0" ii)="" max<="" severe="" td=""><td>Significant .005<sep<.01h .005<sep<.01h="" 0.7="" 0.7<="" 0.8="" 0.9="" 1="" and="" d1="" iesser="" if="" no="" of="" prospect="" significant="" td=""><td>Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H 1 1 1 D2 or pounding) Insignificant</td></sep<.01h></td></sep<.005h> | Significant .005 <sep<.01h .005<sep<.01h="" 0.7="" 0.7<="" 0.8="" 0.9="" 1="" and="" d1="" iesser="" if="" no="" of="" prospect="" significant="" td=""><td>Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H 1 1 1 D2 or pounding) Insignificant</td></sep<.01h> | Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H 1 1 1 D2 or pounding) Insignificant | | Select appropriate value from Table Note: Values given assume the building has a frof pounding may be reduced by taking the state of pounding may be reduced by takin | Separation Factor D1 Separation f Floors within 20% of Storey Height pors not within 20% of Storey Height Factor D2 Height Difference > 4 Storeys Height Difference 2 to 4 Storeys Height Difference < 2 Storeys Factor D and Slide threat, liquefaction etc. Factor F | Severe 0 <sep<.005h (set="" 0.4="" 0.5="" 0.7="" 0<sep<.005h="" 1="" d="1.0" i)="" max<="" severe="" td=""><td>Significant .005<sep<.01h .005<sep<.01h="" 0.7="" 0.8="" 0.9="" 1="" and="" d1="" iesser="" if="" no="" of="" of<="" prospect="" significant="" td=""><td>Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H 1 1 1 D2 or pounding) Insignificant 1</td></sep<.01h></td></sep<.005h> | Significant .005 <sep<.01h .005<sep<.01h="" 0.7="" 0.8="" 0.9="" 1="" and="" d1="" iesser="" if="" no="" of="" of<="" prospect="" significant="" td=""><td>Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H 1 1 1 D2 or pounding) Insignificant 1</td></sep<.01h> | Insignificant Sep>.01H 1 0.8 Insignificant Sep>.01H 1 1 1 D2 or pounding) Insignificant 1 | ## Table IEP-4: Initial evaluation procedure - Steps 4, 5 and 6 | Table IEP- 4 Initial Evaluation Procedure Steps (Refer Table IEP - 1 for Step 1; Table | 4, 5 and 6
IEP - 2 for Step 2; Table IEP - 3 for Step 3) | Page | | | |--|---|------------------|--|--| | Building Name CODC. Location CG CA. TOHN ST. | Ref. 71
By Date | 360/317
815/4 | | | | Step 4 - Percentage of New Building Standard (% | NBS)
Longitudinal | Transverse | | | | 4.1 Assessed Baseline (%NBS) _b (from Table IEP - 1) | | 60 | | | | 4.2 Performance Achievement Ratio (PAR) (from Table IEP - 2) | | 1015 | | | | 4.3 PAR x Baseline (%NBS)b | | 64 | | | | 4.4 Percentage New Building Standard (%NBS (Use lower of two values from Step 3.3) | <u>[</u> | A | | | | (Gas lower of two values from Step 3.3) | | | | | | Step 5 - Potentially Earthquake Prone? (Mark as appropriate) | %NBS > 33 | NO. | | | | | %NBS <u><</u> 33 | YES | | | | Step 6 - Potentially Earthquake Risk? (Mark as appropriate) | %NBS <u>></u> 67 | (NO. | | | | | %NBS < 67 | YES | | | | Step 7 - Provisional Grading for Seismic Risk base | ed on IEP | _ | | | | | Seismic Grade | | | | | Evaluation Confirmed by | Signature | ,
e | | | | | STSHILTON Name | | | | | | 15499 CPEng. N | lo | | | | Relationship between Seismic Grade and %NBS: | | | | | | Grade: A+ A
%NBS: >100 100 to | | E < 20 × | | |