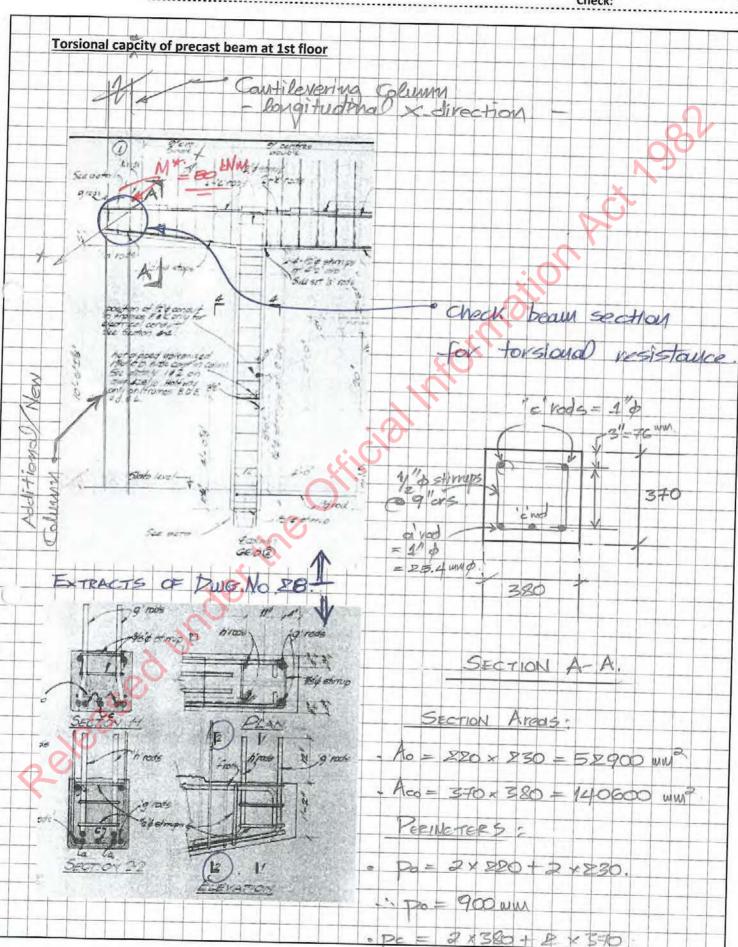
Project/Task/File No: Project Description:	Sheet No 48 5	of
Project Description:	Office:	
	Computed: /	
	Check: /	********
* . solving quadratic equation for k		
K2 + 2 = (3 - 4 × 1,22) K - 192 × 1,2	2 = 0.	
3.02		Q.
		7
1. K2 + 5.1 K - 21.3 =0 ax2 + Bx.	+0=0	
8 1	1/221	
1=5.12+4×1×21.3 -X1,2=-BI	V B=-4ac	
1 = 5.1 + 4 / 1 × 21.3	2	
A = 111.8 70.	(O)	
KIZ = -5.1 ± VIII.2.		
-1. KI,z = -5,1 ± VIII. 2.		
~ K1 = + ye only => K= . Z.7		
(2)		
M* = 7.43 × 1.35° = 5 WW / 11 MUN		
2.7		
From previous calculation of force (load dema	ug
In - 7112 ball 226 - 26 8 6AT		
1 pr - 4.43		
Dowel food 26.8/4 = 6.7 W. V.		
- lower 26.8/ = 6.7 M. V	No	
Provid	led the typ	~
	7/	>6
	Delays.	

Project/Task/File No:	Sheet No 485. of
Project Description:	Office:
	Computed: / /
	Charles


Flexure Capacity: Mr. OMn = O(N+Asfy)(d-a/2) Where: , \$ = 1.0. · N = 24 × 0,15 × 1.2 × 1 = 4.30 kN thk. high long . Provided 665 mesh => As = 147 wm2 per m width. · d= 150/ = 75 MM. · a = Asfy = 147 × 300. 0= 1,73 0.85 × feb 0.85 × 30 × 1000 ... \$Mn = 3.59 = 3,6 kMm/m long 90 NBS = 3.5 = 72 %. VOK (f) =300 MPar 7 67%. Alternatively: Cfy= 485 UPa OpMm= (4.32 > 103 + 147 + 485) (75 - 2.79/2) ·. % NBS = 5.56 = 100%. VOL

ject Description:	5-PA010.37	•••••••••••	••••••		•		neet No 49	of
	Wellington Eas	st Girls College,	Block 4 - Sout	th Wing			mputed:	
				127			neck:	
		A A A TEXT CONTROL OF				••••••		
Poom cubinet to T.								
Beam subject to To	rsional mome	ents						- 1
			1					
+++++	A	A	A					
	N	1	1					
	1-	f · - Y						
	1	1						
	~1/	1	Crack lines	" Figure	1		C	
	-			1 Igus E				
				SPAT				
		K	10					
	1		> L.	Em 1 Sem "		W		
	YI TE	7	4131 }					
	LAN DEAD	1	15		100			
	1 72 -	100	2				1 1 1	
		15'	"	<u> </u>	"			
		d5°	"4	Figure 2	#			
,		65°	"	Figure 2	***			
		(5°)						
Torsional	upwents	produc				which	· rocul	4
		produc			25525	which	resul	+ 1
			ce she	a str	25525			
	upwents tensile	produc	te she	a str				+ i

Torsional woments produce show stresses which result in principal tensile stresses inclined approximately 45° to the longitudinal axis of the member. Diagonal cracking occurs when these tensile stresses exceed the tensile strangth of the concrete. The cracks will form a spiral around the member, as per Tigure 1.

Reinforcement in the form of closed links and longitudinal bars will carry the forces from increasing torsional moment by a truss action with reinforcement as tension members and concrete as compressive struts between links. Failure will eventually occur by reinforcement vielding coupled with crushing of the concrete along line AA as cracks open up on other faces.

Project/Task/File No:	5-PA010.37	Ch		
Project Description:		Sheet No 50	of	0
	Wellington East Cirls Callage Bloom B	Office:		(
	Wellington East Girls College, Block 4 - South Wing	Computed:		(
	***************************************	Chacks		

Project/Task/File No: Project Description:	Sheet No 51 of
	Office:
DESIGN MOMENT FOR TORSION	Computed: / / Check: / /
Torsional Strength	
Should soctisfy: T* < 0.1 pAote 4	Lu order to soct
	Atilever Column @ 15 LON
· \$= 0.75	TON
€ fc' = 30 MPac	
· Aco = Area euclosed by period (380 x 370 = 140600 mm²	ueter of section (www
· to = 0.75 Aco/po 1 . Po = P	enimeter of area Ao Cum
1. to=0.75 x 140600 Po=	900 mm
: tc = 117.2 . Aco =	=140600 wm²
DO.1 & Acote VFE	
= 0.1 × 0.75 × 140600 × 117 V30	
= 6.75 = 7 kNm < 8 T*	
These Care Han Journey	
Therefore, the lovsland reing	orcement is regula
· Existing reinforcement should	be able to resist
a nominal torsional noment, -	in, given by:
	7
To 50,44 Acoto Vfc" (1 + N* 0,33 Ag Vf.	
0.33AgVf	
In = I +	[8]
Ф	
	OPUS

Project/Task/File No:	Shoot No. T.D.
Project December 1	Sheet No 52 of
Project Description:	
	Computed: / /

OR

From (1): $T_{M} = 0.44 \times 140600 \times 117 \times 130 = 39.6 \text{ kNm}$.

From (2): $T_{M} = 80 = 106.7 \approx 107 \text{ kNm}$.

HENCE:

Existing Reinforcement should be able to resist a nowimal torsional moment, In, equal to or greater than the larger from above.

Areas of Closed stirrups & longitudinal reinforcement.

• Area of one leg of closed stirrup resisting torsion within a distance s, A, in ww.

At = Tus RED. ZAOFY

Min. area of reinforcement, Al, around the perimeter poshall be equal to: Al = Tmpo

A, = 107 × 10 × 900 ww.

REG. 2 × 52900 × 300 N/mm² = 3034 mm²

 $A_{prol} = 4 \times \pi R^2 = 4 \times 507 = 2026 \text{ m/m}^2$ Let No. -1" bours (25.4 b)

OPUS

66%

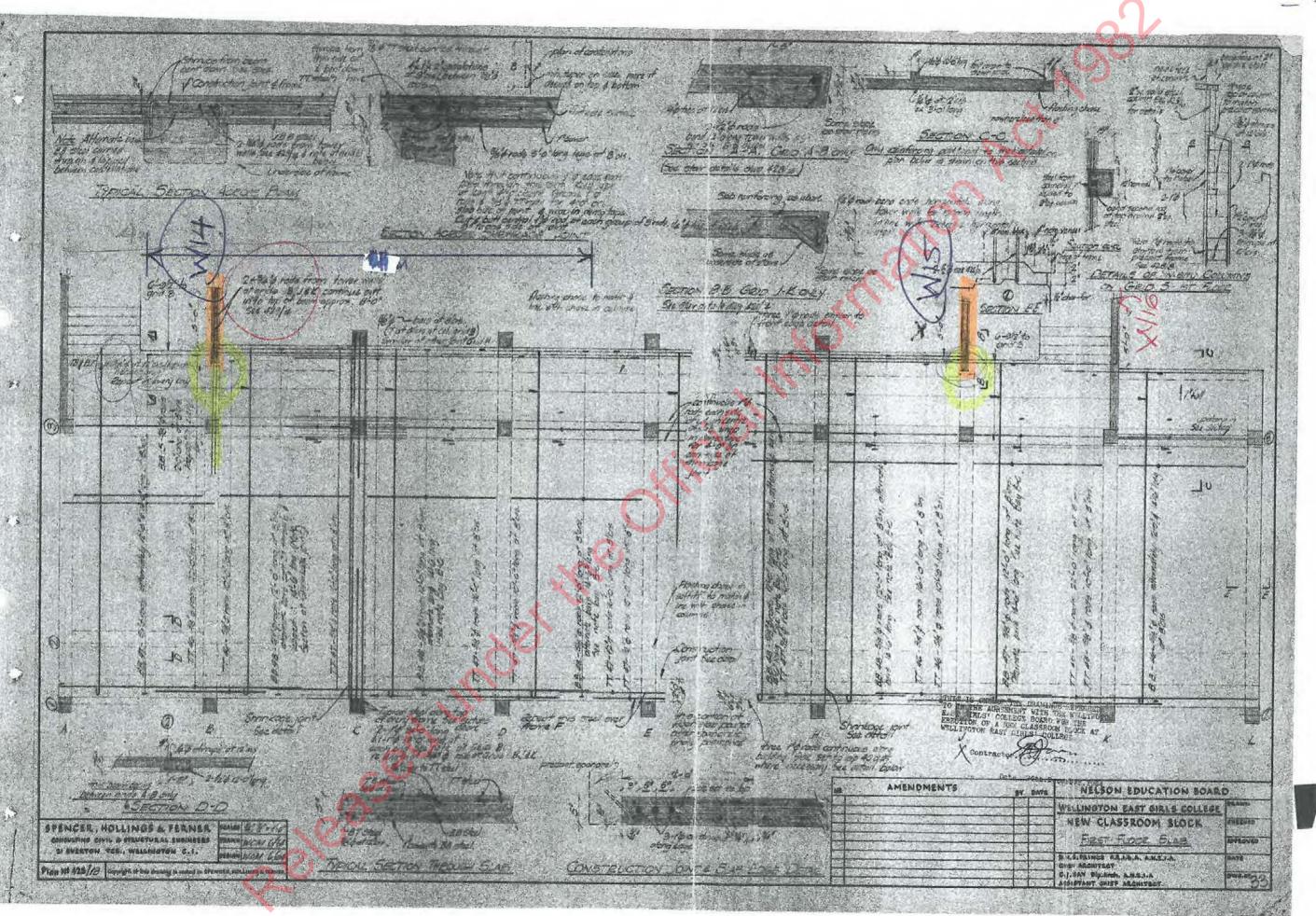
Project/Task/File No:	Sheet No 53	of	
Project Description:	Office:		************
	Computed: /		1
	Checks		1

	Check:	/	.1
Torsional Strength requirements			
+ × ≤ b Tn			
Where:		000	
* T*: torsion at the section derived on the structure T*= 80 Nm	from the	ne lo	65 cd
+ Tru: nowinal torsional strength of s	ellon.		
Tm = 0.44 AcoteV fe' (1 + N* 10)			
: Tn = 0.44 × 140600 × 117 · V30.			
-: Tm = 39.6 kNm = 40 kNm			
HENCE! Tu = 40 = 50%, NBS.			
Torsional shear stress.			
The torsioned show strength, Vin:			
Yan = Ton shall not exceed 0.2 fe	or SUR	9	
Where: Th = 40 kNm.			
. Ao = 220 × 230 = 52900 WW2			
20. to = 0,75 × Ao = 0.75 × 52900 =	26,45	un,	
Vin = 40 × 10° Nwyh; = 142.9 = 14 2 × 5290 × 26.45 ww ³ = 142.9 = 14	13 N		
2 × 5290 × 26.45 WW	1010		
V= 0.2×30 = 6 MPa. or BMPa (whichever is	s the swa	Ner)	
			ıc

Project/Task/File No: Project Description:	5-PA010.37 Wellington East Girls College, Block 4- South Wing	Sheet No 54 of Office: Computed: Check:
I+ 15 as	sumed that once the torsional	shear stress
on a se	ction exceeds the value to a	use encling
tension	reinforcement in the form of	closed links
must be	provided to resist the full	Horsional)
moment	(See Figure D).	
teusion	force in link F = Asy x fxx	La NZS 5101.
Moment o	f force F about centre line = Fixi	for vertical leg
	F YI	(for horizontal)
Asy = Cross	- sectional area of the two leas	of a link.
Total to	prisional moment provided by one	closed link is
given by	the sum of the moments due t	p each leg of
the link	about the centre line of the	section.
i.e. T=		
for links	stirrups at a distance so apart	, the torsiona
resistance		ained by
	the moments due to each leg	
	sing each chack. This number i	s given by:
M/sy	or vertical legs, and	
*1/5v	or horizon toll logs for eve	acus @ 45° appro

		ask, escr						10.3	••••	st G	irls	Col	lleg	e, B	loc	 k 4-	Sou	ith \	Ving	····							•••	Co	ffice	ute	 55	Š .	of 	
	7	The	2	+	0	ta	0		+	or	510	OY	101	0		Ve	~	15	ta	no	ce	2	P	P VC	y	To	le	d	1.1					
	7	T= Prov		-	2	×	Ŧ	Y	×	y	1	> .	×1	د	×	R	7		As	y >		Cy	×	(A1.5	X)	-	7'6	11 2	×	2		0		
A			1	-yo	2,	7/6	-	ts Sy	y	×	a	Y		G	,															Č		5		
Ŋ	lhe	re			0	A	sy	-	6	2 2		rk ag		_	2	25	3	M	u z								2							
					9			-		30 Zê					01/	ud		У	,		2/	8	W	WA.										
			-			P	7		3c	0	M	Pa			nho.			/ w	na.				Im				-1							
70	> >		T _p		/ <u>.</u> =		16	-	23		201		2	PÉ			21	8	× /((0)	9				×		O	10						
										0				0					1	efe	2	9					/							
								\$		>																								
			2	8	0																													

Project/Task/File No:	Sheet No 56, of
Project Description:	Office:
	Computed: / /
	Check: / /

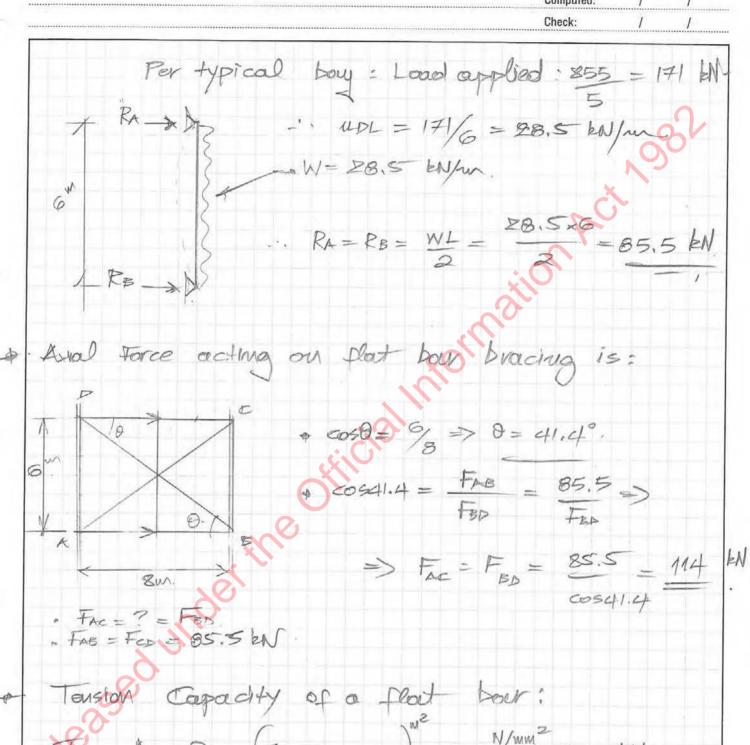

Torsional and flexural shear together Where torstonal and flexunal shear stresses occur together at a section the following condition shall be soutisfied: Van + Van < Vivox. Where: . Vy = Nominal shows stross (MRa) · Vin = Torsional shace stress (MPO) **OPUS**

CALCULATION SHEET Project/Task/File No: Sheet No 57 of 41 **Project Description:** Office: 3.6 : Diaphragm Connection Capacity to Computed: Concrete Walls Check: SHEAR DEMAND - Y DIRECTION A = 403 EN shour force Demand: on subject wall No. WIH or No. WIS Y- Direction SHEAR CAPACITY Provided by: 1/ Tie Bars - 2 No. 3/4" rods = 19 mm & (Av = 2 x 283, 5 = 567" fy = 300 MPac . Tousion Capacity : Ty = Py Ay Ty = 300 N 2/2 567 MM2 Ty = 170 EN 2/On the consectty of the diaphragm com contribute also the shear friction of reinforcing bar perpendicular to wall. · Shear friction: Vm Vm = (Avfy +N*) p Where! · AV = 283,5 ww · fy = 300 MPa. · y=1,0 ×7. = 1,0. -1. Vn = 283,5 x 300 x 10-3 2No. 3/4 vods. 1 Vn = 85 EN prictor VTENSION

OPUS

Project/Task/File No:	Sheet No 5	58	of	41
Project Description:	Office:			
	Computed:	1		1
	Chooks	1	Umilionia.	1

the diophroson connection coepacity wall location will be: Ve = 170 + 85 = 255 kW % NBS = 255 = 63%. **OPUS**

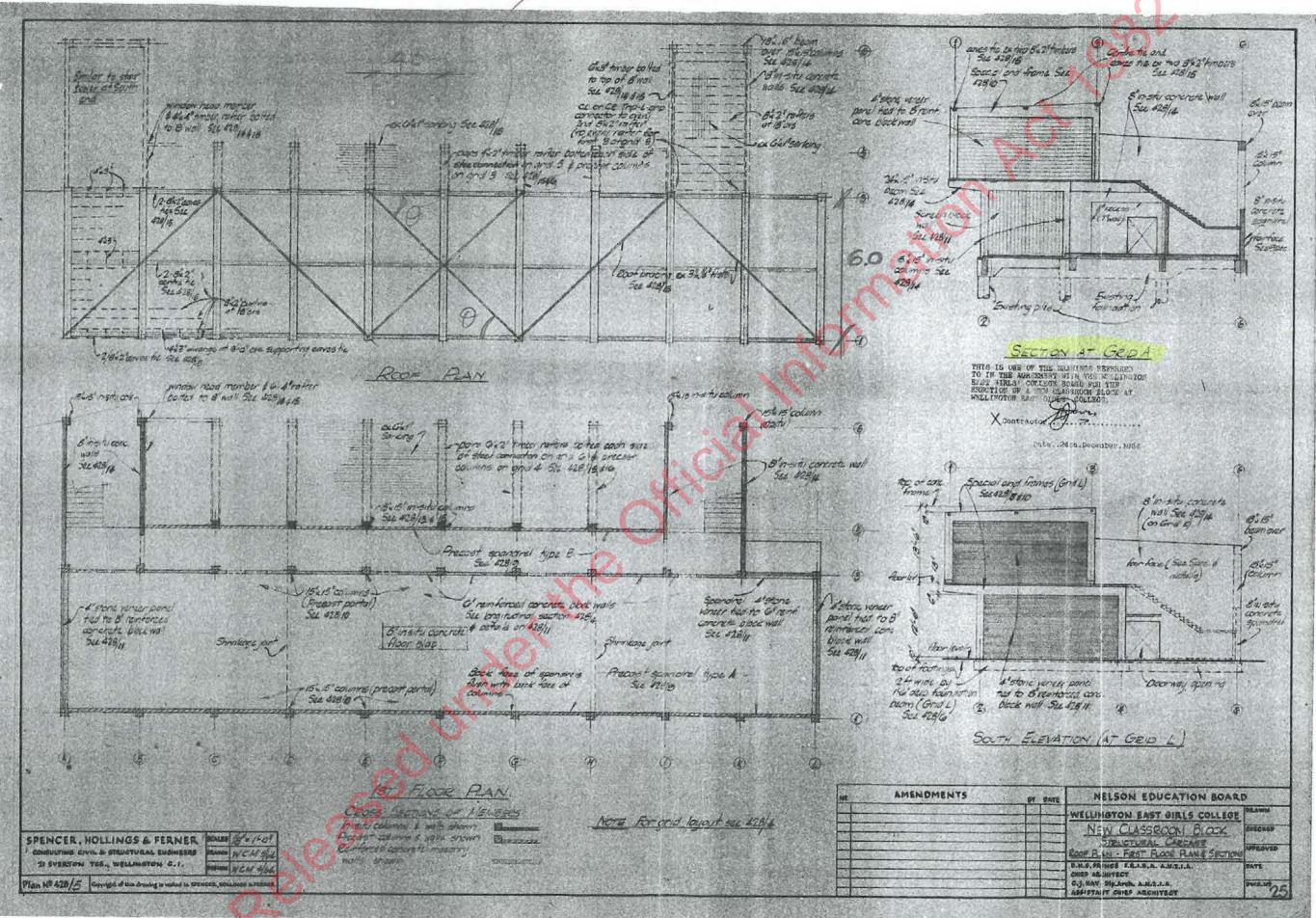


CALCULATION SHEET Project/Task/File No: Sheet No 60 Project Description: Office: 3.7. ROOF DIARHRAGM Computed: Check: * On each direction there are 3 No. - steel bours (3" x 1/4" ~> 76.2 x 6.35) Tension Capacity: Ty = 3Nb. x (76.8 × 6.35) 2 860 / 4 200 ... Ty = 377,4 kN. a - Refer to page 62 for couparty of steel bracing per typical bour. . The concrete beam at roof level has been checked below for biastal bending Therefore, overal agracity 767%. for roof diaphragur

OPUS

CALCULATION SHEET Project/Task/File No: Sheet No 61 Project Description: Office: BEAMS Computed: FOR Check: = 0.6 ×4 = F= COM. W When loof = 2.4 bollon, SW = 24 × 0.487 × 0.38 + 4, 8 kW/m 2. F=0.8×4.2=3.3 W 7,6m Hortzoutal. D=380 2No. - 1/3 \$ (12.7 mm \$ 3/0 9 strups @ 12"cus \$ 5100, -1 \$ (25 mg) \$ NO. -1 \$ (25 mg) AS= 127 + 490 = 617 mm Yours · As = 2 × 490 = 980 mm 0 = 380 - 25 - 127 - 9,5 = 358,8 mm YAME : OMM, = p As fy /d-as Φ Mm = 617 × 300 (338,8-15.8) a = 617 × 300. 15,8 WW · plum = 60 Www. AMn = 980 × 300 410 - 30.3 \ a = 980 × 300 0.85 × 30 × 380 · Dan = MG Wm 1. d = 30,3 mm France Demand WLZ = 3.3 = 7.72 = 94.4 km - due to loderal Mx = Wx LZ = 8,4 x 7.72 = 17.8 Wm due to growty Bending (1) + 190 Blaxla 0 Capacity = < 1,0 => 17.8 + 24.4 = 0.35 < 1.0 & May **OPUS**

Project/Task/File No:	Sheet No 62 of
Project Description:	Office:
	Computed: / /

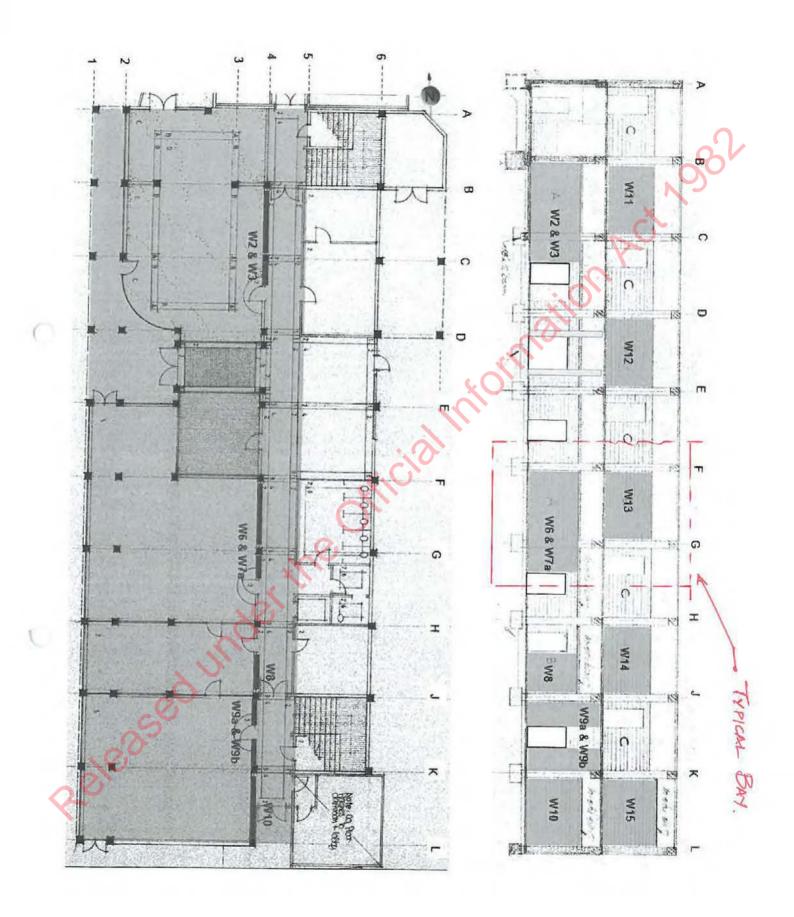

Distribution of Horizontal Forces

Level height (m) (kN) (m) (kNm) $W_1^*h_1/\Sigma(W_1^*h_1)$ $V_X = V_Y$ (kN)	Level height (m) (kN) (m) (kNm) $W_1^*h_1/\Sigma(W_1^*h_1)$ $V_X = V_Y$ (kN)	Level height (m) (kN) (m) (kNm) $W_1^*h_1/\Sigma(W_1^*h_1)$ $V_X = V_Y$ (kN)	Level height (m) (kN) (m) (kNm) $W_1^*h_1/\Sigma(W_1^*h_1)$ $V_X = V_Y$ (kN)	Level height (m) (kN) (m) (kNm) W _i *h _i /Σ(W _i *h _i) Vx = Vy (kN) Vx = Vy (kN) Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Level height (m) (kN) (m) (kNm) W _i *h _i /Σ(W _i *h _i) Vx = Vy (kN) Vx = Vy (kN) Roof -	Level height (m) (kN) (m) (kNm) W _i *h _i /Σ(W _i *h _i) Vx = Vy (kN) Vx = Vy (kN) Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Level height (m) (kN) (m) (kNm) W _i *h _i /Σ(W _i *h _i) Vx = Vy (kN) Vx = Vy (kN)	Level height (m) (kN) (m) (kNm) $W_1*h_1/\Sigma(W_1*h_1)$ $Vx = Vy$ (kN) $Vx = Vy$ (kN) Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 $\Sigma =$ 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 $Sp =$ 0.925 $\mu =$ 1.25 $Cd(T) =$ 0.8 Base shear-Vb 3712.0 0.08V 297.0 0.92V 3415.0	Level height (m) (kN) (m) (kNm) $W_1^*h_1/\Sigma(W_1^*h_1)$ $V_X = V_Y$ (kN)	Level height (m) (kN) (m) (kNm) $W_i^*h_i/\Sigma(W_i^*h_i)$ $Vx = Vy$ (kN) $Vx = Vy$ (kN) Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0	Level height (m) (kN) (m) (kNm) W ₁ *h ₁ /Σ(W ₁ *h ₁) Vx = Vy (kN) Vx = Vy (kN) Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 0.08V 297.0 0.92V 3415.0	Level height (m) (kN) (m) (kNm) W ₁ *h ₁ /Σ(W ₁ *h ₁) Vx = Vy (kN) Vx = Vy (kN) Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear Vb 3712.0 0.08V 297.0 297.0 0.92V 3415.0	Floor	Storey	Weight Wi	h _i	W _i *h _i	Ratio	NZS 2006 Shear per floor	NZS 2006 Shear per floor
Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) (0.08V) (0.0	Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) (0.08V) (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 0.08V 297.0 0.92V 3415.0	Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) (0.08V) (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 0.08V 297.0 0.92V 3415.0	Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) (0.08V) (0.0	Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) (0.08V) (0.0	Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 0.08V 297.0 0.92V 3415.0	Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) (0.08V) (0.0	Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 0.08V 297.0 0.92V 3415.0	Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) (0.08V) (0.0	Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 E = 4640 17229 3712 3415.0 (0.08V) (0.08V) (0.0	Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) (0.08V) (0.0	Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) (0.08V) (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 0.08V 297.0 0.92V 3415.0	Roof - 583 7.4 4314 0.25 1152 855 1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 0 E 4640 17229 3712 3415.0 3415.0 Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Level	height (m)	(kN)	(m)	(kNm)	$W_i*h_i/\Sigma(W_i*h_i)$		
1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 297.0 0.08V 297.0 0.92V 3415.0	1 3.9 3690 3.5 12915 0.75 2560 2560 Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 0.08V 297.0 0.92V 3415.0	Roof	1.4	583	7.4	4314	0.25	1152	855
Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 3712.0 0.08V 297.0 0.92V 3415.0	Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 Based on Sp = 0.925 μ = 1.25 0.88 Cd(T) = 0.8 3712.0 0.08V 297.0 0.92V 3415.0	Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 3712.0 0.08V 297.0 0.92V 3415.0	Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 3712.0 0.08V 297.0 0.92V 3415.0	Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 3712.0 0.08V 297.0 0.92V 3415.0	Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 3712.0 0.08V 297.0 0.92V 3415.0	Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 3712.0 0.08V 297.0 0.92V 3415.0	Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 3712.0 0.08V 297.0 0.92V 3415.0	Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 3712.0 0.08V 297.0 0.92V 3415.0	Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 \$\$\text{Sp} = 0.925\$ \$\$\mu = 1.25\$ \$\$\text{Cd(T)} = 0.8\$ Base shear-Vb 0.08V 297.0 0.92V 3415.0	Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 3712.0 0.08V 297.0 0.92V 3415.0	Gr 3.5 367 0.0 0 0.00 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 0.08V 297.0 0.92V 3415.0	Gr 3.5 367 0.0 0 0.00 0 0 0 Σ = 4640 17229 3712 3415.0 (0.08V) Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 0.08V 297.0 0.92V 3415.0	1	3.9						-
Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Gr							
Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0		4	0030					
Based on NZS 2006 Sp = 0.925 µ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925	Based on NZS 2006 Sp = 0.925	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925	Based on NZ5 2006 Sp = 0.925 µ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925	Based on NZS 2006	Based on NZS 2006 Sp = 0.925 µ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 µ = 1.25 Cd(T) = 0.8 Base shear Vb		Σ =	4640		17229		(0.08)/\	3415.0
Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Base don NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZ5 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- νb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear-Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0 OHICAL	Based on NZS 2006 Sp = 0.925 µ = 1.25 Cd(T) = 0.8 Base shear Vb 0.08V 297.0 0.92V 3415.0 OHIGHARIA	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Based on NZS 2006 Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Sp = 0.925	Based on NZ5 2006 \$p = 0.925 \$\mu = 1.25 \$Cd(T) = 0.8 Base shear vb 0.08V 297.0 0.92V 3415.0 OHICLIAN CONTRACTOR OF THE CONTRACTOR							(0.087)	N
Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Sp = 0.925 µ = 1.25 Cd(T) = 0.8 Base shear- Vb	Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- νb 0.08V 297.0 0.92V 3415.0	Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb 0.08V 297.0 0.92V 3415.0	Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Sp = 0.925 μ = 1.25 Cd(T) = 0.8 Base shear- Vb	Sp = 0.925	Sp = 0.925	Sp = 0.925	Sp = 0.925	Sp = 0.925	Sp = 0.925 μ = 1.25 cd(τ) = 0.8 Base shear- ν/b 0.08V 297.0 0.92V 3415.0 O(Hitchia) Inflormation ACC								X
μ = 1.25 Cd(T) = 0.8 Base shear- Vb 297.0 0.92V 3415.0	μ = 1.25 Cd(τ) = 0.8 Base shear- Vb	μ = 1.25 Cd(T) = 0.8 Base shear- Vb	μ = 1.25 Cd(T) = 0.8 Base shear- Vb	μ = 1.25 Cd(T) = 0.8 Base shear- νb 297.0 0.92V 3415.0 O.68V 297.0 O.92V 3415.0 O.68V 297.0 O.92V 3415.0	μ = 1.25 Cd(T) = 0.8 Base shear-	μ = 1.25 Cd(T) = 0.8	μ = 1.25 Cd(T) = 0.8 Base shear-	L 1.25 Cd(T) = 0.8	L 1.25 Cd(T) = 0.8	Let 1.25 Cd(T) = 0.8	1.25 0.8	1.25 Cd(T) = 0.8								~ 0"
Cd(T) = 0.8 Base shear- Vb	Base shear- Vb 297.0 0.08V 297.0 0.92V 3415.0	Base shear- Vb 297.0 0.92V 3415.0	Base shear- vb	Base shear- Vb 0.08V 297.0 0.92V 3415.0	Base shear vb	Base shear- vb	Base shear vb 3712.0 0.08V 297.0 0.92V 3415.0 OFFICIAL INTO THE O	Base shear vb 3712.0 0.08V 297.0 0.92V 3415.0 Okticial into the other was a second with the other was a second wi	Base shear- vb	Base shear- vb 0.08V 297.0 0.92V 3415.0 Okticial Into intaktion	Base shear- vb	Ease shear- vb 3712.0 0.08V 297.0 0.92V 3415.0								
Base shear- Vb 297.0 0.92V 3415.0	Base shear- Vb	Base shear- Vb	Base shear- Vb	Base shear- vb	Base shear- vb	Base shear- vb 0.08W 297.0 0.92W 3415.0 Official Information Off	Base shear- vb 297.0 0.92V 3415.0 Base shear- vb 297.0 0.92V 3415.0 OFFICIAL INFORMATION	Base shear vb 297.0 0.08V 297.0 0.92V 3415.0 Official Information	Base shear yb 3712.0 0.08V 297.0 0.92V 3415.0 CHICAL INFORMATION	Base shear- vb 0.08V 297.0 0.92V 3415.0 Okticial Into the object of the	Base shear- vb 0.08V 297.0 0.92V 3415.0 OHICIAL INFORMATION OHICIAL IN	Base shear- vb 0.08V 297.0 0.92V 3415.0 Okticial Internation Okticial Internation	Cd(T) =	0.8						
0.08V 297.0 0.92V 3415.0	0.08V 297.0 0.92V 3415.0	0.08V 297.0 0.92V 3415.0	0.08V 297.0 0.92V 3415.0	0.08V 297.0 0.92V 3415.0	0.08V 297.0 0.92V 3415.0 Official Information	0.08V 297.0 0.92V 3415.0 Othicial Intornation	0.08V 297.0 0.92V 3415.0 Official Information of the contract	0.08V 297.0 0.92V 3415.0 Official Information of the Control of t	0.08V 297.0 0.92V 3415.0 Official Information of the control of t	0.08V 297.0 0.92V 3415.0 Official Intermediate of the control of	0.08V 297.0 0.92V 3415.0 Official Interpretation of the control o	0.92V 3415.0 0.92V 3415.0 Octicial Internal		3712.0					dilo	
0.92V 3415.0 CHIICIAL HOLL	0.92V 3415.0 (Filicial Internal Control of the Con	0.92V 3415.0 OFFICIAL INFORMATION OF THE OFFICIAL INFORMA	0.92V 3415.0 OFFICIAL INFORMATION OFFICIAL INFORMA	0.92V 3415.0 OFFICIAL INFORMATION OFFICIAL INFORMA	0.92V 3415.0 Official Information of the control o	eleased under the	o.92V 3415.0 Official Information of the official Informa	eleased under the	0.92V 3415.0 Official Informs Released under the	0.92V 3415.0 Official Informs Released under the	o.92V 3415.0 Official Informs Official Informs	eleased under the official intornical interpretation of the official interpretation of the of	0.08V	297.0					7.0	
ine official Infoli	der the official Infolia	inder the official Infoli	ad under the official Infoli	ased under the Official Infolio	aleased under the Official Infolio	eleased under the Official Infolio	eleased under the Official Infolio	eleased under the official Infor	eleased under the official Infor	eleased under the Official Infolio	eleased under the Official Infolio	eleased under the Official Infort	0.92V	3415.0					(),	
	Les la	inder	ed under "	asedunder	aleased under	eleasedunder	eleased under	eleased under	eleasedunder	eleasedunder	eleasedunder	eleasedunder			×	Ce (2/file			

Σ =	4640	17229	3712	3415.0
		·	(0.08V)	

Based on	NZS 2006
Sp =	0.925
μ=	1.25
Cd(T) =	0.8
Base shear- Vb	3712.0
0.08V	297.0
0.92V	3415.0

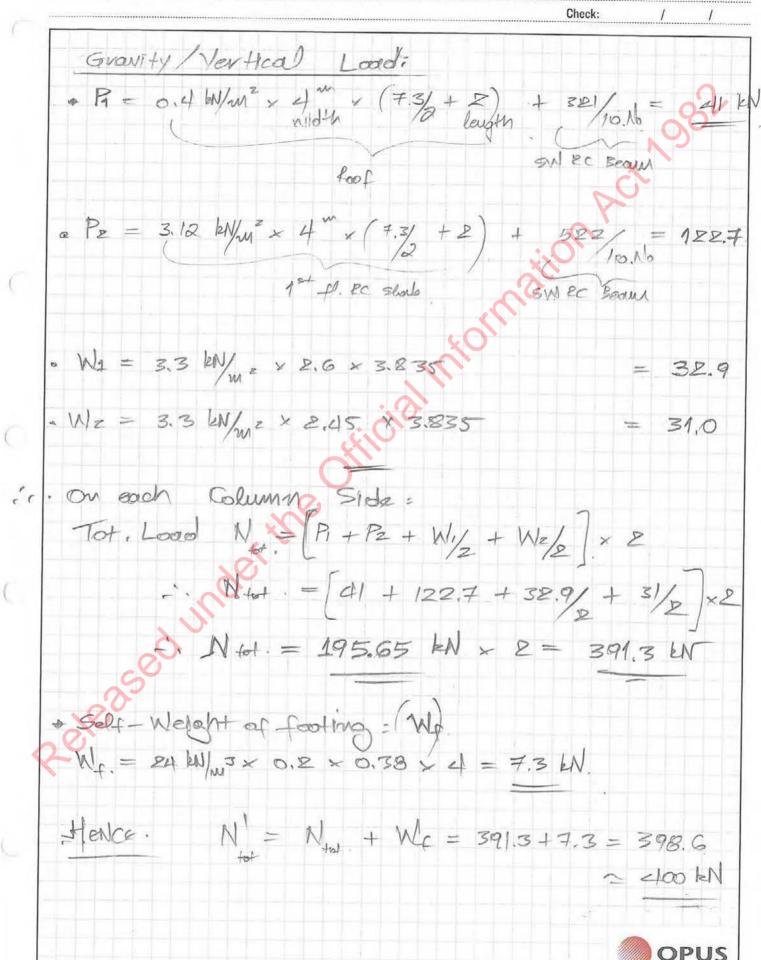
 $7 \cos \theta = \frac{6^3}{84} = 0.75 \text{ i. } \theta = 41.4^\circ$



		sk/F scrip						10.		ast	Gi	rls	Col	lege	e, B	loc	k 4	- So	uth	Wir	 ng			••••					Of	fice			6 <u>5</u>	5	of	
																														mp eck	ute	d: 				
-		-								T	1			•••							····								1117	· · · ·						
		1								t						H		h																	+	-
	Fou	ında	tio	ns -	- ch	iec	k r	oc	kin,	gn	100	le	res	po	nse			L																	7	
7	0		Ь	71	2	+	h	0	t	1	201	16	717	tu	di	na	0	1	2	10	2	us	ve	Ve	0		dī	re		tio	ov	1		9	5	1
				0						1		V			1			ľ						1								1		ク		
a		die	P	rae	CE	2M	1e	M		8	Me	2/	-14	00	1	0	+P	P	ro	acc	h	H	WC	IS	U	Se	d		te	(95	+1	M	d	e	
+	he		P	ou	ne	la	#	ov	1	C	a	P	20	i.	ty	1	C	x+		th	e		20	or	tie	m	1	0	1	7	me	2	S	યું ક	SMI	i
1	00	d		a-	+	V	N	nic	·	1	u	50	i.	7		0	000	-0	Ne		4	or	1	li	m	1+	in	a	C	10	0	00	+	ov	1	
	6	1	pr		1	-A.	_		1	1	1		-				19 2010				1							2								
9	+	+	10		dy							1														9										
-	5	un	M	au/	Y		C	F	(SH	+	d	NC	Ne	25	-		-	-			-			5											
_	Lo	NO	i+	uc	di	ne	zl		G	di	Ve	0	+	01	1							S														
12		ed		on	1	h	-	īz	0	1	-	0		الم	_		2		M			5	-	4		-1	0		4						0-	^
	S.J.																	C.G		6				4		-	0	MIN	1	/	a		CA	7	1	-
0		3	5	wv	M	+	1	20	Ke	5	+	P	le	rc	e		2	>		Pre	vi	di	no	9	O		C	4	a	cī	4	1	of	- 9	18	/
C	B	cl	21	NC	3	0	4		1	2	2/	0	. 1	a	+>	0	S	M,	and the)			3												
+	+		ł		7	+				1		+	1)		M.	٥,	-	V												-	+	-
				200						L					3																					
	•	Tre	NC	151	le	VS	4	2	_ <	1	re	¢	1	0	4			-	H									-						+	+	+
B	as	eq	3	01	n	1	ho	V.	C	lis	F	00	20	0	W	e	17	1	0	1	N	3	w	W	,	α	N	u	Pl	2if	t		01		52	2
00	cu	W.	-			>		F	in	Vi	9	in	10		0	9		_	es						0.				Ø						+	+
-	D	CK	1 .		-			+			1	-	-						0				1		7										_	1
1	KO	CK	10	10			a	7		6	2C	1	10	2	re		-10)	C	+	- 1	VIR	1	Ma	1											+
	+	+		¢	X	4				-		-		-																						1
Ī		C	X	7		Ī					İ																									
					+	-				-	H	+	+	+		_		-														-				-
					İ	Ī						İ																						1		
-	-					-		H			-		+																					-		-
																																				1
-	-										-																									

Project/Task/File No:			11 , 11		Sheet No (56, of	
Project Description:	ALONG GRID	LINE	4		Office:		
~ <u> </u>	MAJTUDINAL	DIREC	IJON -		Computed:	1	1
CHECK	OVERTURNING	OF	TANEL	***************************************	Check:	1	1
- TYPI	CAL CASE -	· Lor	IGITUDIN	IAL D	PIRECT	10N	
1		4					
# = 1150/5		M.					
»F.	= 230	12			1	Fireure	O
- 1					1-4	+ volume	*
	9 P		1 Pi			X	
	Pi		V.				
			21		3.9		
= 2560/2	2.6W	1	6				
1		WW.		14+	Θ		hi :
- tz	=853			A O	V	# Finall	ne T
			J.P.		1		1
	VP2		VP3	24			
	wm JAGG EN. w		1 19	6 EN. 1	12. 3.5		
	380 196 EN. W	J. W.	(0	ww			
	1	1 115	V PC	3 wlide.			
	V V	27776			V.		~ V
	1	TWE		0			
	Tansion	1/4 /10	23	owpr.			111
	ans leve	Vb=10	200		· Assu	mo for	otina
	10	Lug.	< >		dimen	slous.	9
			e ////		dimen.	nu wil	de
	Overtumina	4	N _{tot}		× 38	Omm	deep
			1 1 tot				
Applied	Moment (M)						
				. 0			
Mo = +1	MI + fz x hz	_ = 2	30 × 7.4	+ 853	× 3.5.		
1, 11, 2	4687.5 4	Lina					
	1001.00	000 (
76	(.)	7					
Resistance	3 Moment Mr	15			-/-	1	1-01
el =	N _ 40	5	1	1 m.		MR =	12/p.
		× 0,0			7	M.	=
	g > b 400	X	7. 7,				
	. 0.	1	11		-		
· e=	= -0 =	7	- 1.1 3	= 1.45	w, \		
	2 &	0	2				
MR = 1	Nxe = 400	× 1.6	15 = 5	80 EN	m		
							PUS
						11/1///	

From previous, base shear on typical critical bay: $V_b' = 10.83 \text{ kN}$.


with 11% critical damping	Calculated capacity ratio	Spectral displacement demand	Spectral displacement capacity	Results	Effective system damping (@ ULS)				Method: Custom	Effective Damping	Effective response period (@ ULS)	System displacement ductility (@ ULS)	Yield displacement (roof)	Yield base shear	Structural Behaviour		(1) Equal to 21 if N/A or exceedance probability <1/250			Structural Performance Factor	Distance to Major Fault ¹	Return Period Factor	Zone Factor	Site Subsoil Class	Design Spectrum	Calculation: Push-over curve, modified for mode shape, plotted on the NZS1170.5 Acceleration-Displacement	Element: Foundations - longitudinal direction
at 0.7 s, ductility 2	NBS	SD (mm)	S _{d_utt} (mm)		Self					lg.	Teff (S)	ш	Δ, (mm)	V, (kN)	our		8			Sp	D (km)	D	Z	(0)	1	d for mode s	al direction
ility 2	98%	40.7	40.0		11.0%						0.70	2.00	20.0	130.0						0.7	Ò	1.3	0.4	В		hape, plott	
	0 100	000	Data No.	0.20	0.30	Disp	Accele 0.50		on (g	0.80	0.90 T=0.4		1.00	1.10 1=0.2		Period	Spectral displacement	Spectra acceleration	Roof level displacement	Base shear	Pushaver Curve Point	Mode 1 participating mass ratio (or mass coefficient)	Mode 1 participation factor	Building weight	THE RESERVE THE PARTY OF THE PA	n the NZS1170.5 Acceleration-Displa	1
Sp	200	130%		Y	\	amand =		6		1						T ₁ (s)	S _{di} (mm)	S, (g)	Airnof (mm)	V, (KN)	-	a,	PF ₁	W (kN)			
ectral Disp	300	120%			T=2.0	96											0.00	0.00	0	0.0	1	1.00	1.00	400.0	Pushover Curve	demand spectra	
Spectral Displacement (mm)	400	10%	11% c		3											0.50	20.00	0.325	20.0	130.0	2 (at A _V)				Curve		
mm)	?	5	11% critical damping	T=3.0												0.50	20.00	0.325	20.0	130.0	w						
	500	5%	ping	3.0												0.50	20.00	0.325	20.0	130.0	4					Date:	Input By: MX
																	3	-	7.	1	5 (Nov	₹ ×
	600		T=4.5													0.70	40.00	0.325	40.0	130.0	5 (at Δ_{ULS})					Date: Nov. 2015	

roject/Task/File No:	Sheet No 69 of
roject Description:	Office:
THEORETICAL UPLIFT OF FOOTING ON TYPICAL BAY - LONGITUDINAL DU	Computed: / /
ON THEE BAY - LONGTHEDINAL 1211	e, Check: / /
	0.1
* DEIFT =	241 ×100 × 0.84 4900
	4900
$h_1 = 3.9^{M} \times = 271 \text{ m/m}.$	
$h_1 = 3.9 \times = 241 \text{ myr}.$	
BYC	
T bell o	
X KEE	
= 2/ h.	\$+0+90°=18
eff 13	\$+0+70=1¢
$n = 2/h_{tot}$. $eff / 3h_{tot}$. $= 4.9m h_z = 3.5^{m}$	
The state of the s	· \$+0 = 90°
- AP	
γ1 (θ)	
V V V E	
4m.	
From similar triangles: AABC and	A ADE
tan02 41 - Y	
tom 02 41 = 7 4900 4000	
100 C	
0 -> y= 33.5 2 34 wm - Vertice	0 11,1-0+
y = 0,0 2 54 mm rep tro	a uput t
Note:	
based on previous spreadsheet, the displant	or course to
	manney and manne
tallen approx, 41 mm.	

OPUS

Project/Task/File No:	Sheet No =	10	of
Project Description:	Office:		***************************************
WEIGHT PER BAY BETWEEN FRAMES	Computed:	1	1
	Check:	1	1

CALCULATION SHEET Project/Task/File No:	Sheet No 7	VISED.
Project Description:	Office:	
STAIR TOWER FOOTING.	Computed:	1 1
- CHECK ROCKING PER WALL SECTIONS	Check:	1 1
EARTHQUAKE L	EARTHQUA	KE,
		20
	(K) o	r (10)
I M		100
COMPEGSION	X	
68 thu	20	
	xb level /1 Thoor	bunding
R - + + + + + + + + + + + + + + + + + +		
TENSION /		
8 C V T T S	4	
AI AI AI AI AI AI AI AI AI AI AI AI AI A		
		- 1
7777	50	
1970 7 44 70	1	111
Je 1970 0 44 70 AT WI	1 914	+ 1
	(dE)	
Myock & ELEVATION (G	SECTION	N A-A
(Could ELEVATIONS (G		
(Cont)		
N		
Bearing Langth : (li)		
0 CN 290		
$l_1 = \frac{290}{9 \times b} = \frac{290}{400 \times 0.914} = 0.79 \text{ m}.$		
Eccentricity: (e)		
$e = \frac{L}{2} - \frac{l_1}{2} = \frac{6.44}{2} - 0.79 = 2.8$	825 m.	
2 2 2 2		
Rocking Moment: (Mrock)		
	141	
Mrock = Nxe = 290 x 2.825 = 819.25	ENW.) MR =
Applied Moment: (M*)		(Mo
M= Y*, h = 200 > (6.17 + 0.1 + 0.46	1- 1200 41.	60%
1 = 1 × 11 = 200 × (0,17 + 0,1 + 0,46	= 1340 ENW	/

/		
	E 6	
	-	
11 72 81	11 60/ 1 11 0,6x REO	
00-		

Element: Foundations - Longitudinal direction Calculation: Push-over curve, modified for mode s	dinal direction fied for mode	shape, plot	Element: Foundations - Longitudinal direction Calculation: Push-over curve, modified for mode shape, plotted on the NZS1170.5 Acceleration-Displacement demand spectra Design Spectrum	cement demand	spectra	lemand spectra		Input By: MX Date: Nov	ut By: MX Date: Nov. 2015
Design Spectrum	mu	N. Contract of the second			Pushover Curve	Curve			
Site Subsoil Class Zone Factor	Z	0.4	Building weight Mode 1 participation factor	W (kN)	290.0				
Return Period Factor	ZJ	1.3	Mode 1 participating mass ratio (or mass coefficient)	g. 1	1.00				
Distance to Major Fault	D (km)	Ö	Pushover Curve Point	- 2	1	2 (at A,)	8	4	5 (at Δ,,,,, c)
Structural Performance Factor	Sp	0.7	Base shear	V, (kN)	0.0	132.0	132.0	132.0	132.0
			Roof level displacement	Δ _{Lroof} (mm)	0	20.0	20.0	20.0	1 40.0
			Spectra acceleration	S. (g)	0.00	0 455	0 455	0.455	0.450
			Sportral displacement	Sai (6)	0.00	0.435	0,455	0.435	0.455
(1) Equal to 21 if N/A or exceedance probability <1/250	7250		operind Darind	S _{di} (mm)	0.00	20.00	20.00	20.00	40.00
Structural Behaviour	viour		0	(e) fi		0.42	0.42	0.42	0.59
Yield base shear	V, (kN)	132.0	1.10						
Yield displacement (roof)	A _y (mm)	20.0	1.00						
System displacement ductility (@ ULS)	H _A	2.00							_
Effective response period (@ ULS)	T _{eff} (s)	0.59	0.90 T=0.4						-
Effective Damping	ping		0.80						
Method: Custom									
			eration 0.70 T = 0.59 s	8					
			Displacement Demand = 32.9 mm	nand =					
			Spe	1	8				
Effective system damping (@ ULS)	Sen	11.0%			T=2.0				
Kesuks			0.20		1		T=3.0	3.0	-
Spectral displacement capacity	S _{d_ult} (mm)	40.0	0.10	V		11% crit	11% critical damping	ping	T=4.5
Spectral displacement demand	SD (mm)	32.9	0.00	130%	20%	10%		5%	
Calculated capacity ratio	NBS	121%	0 100	200	300	400	C	500	600
with 11% critical damping	at 0.59 s, ductility 2	ility 2		S	tral Displ	pectral Displacement (mm)	7		00.500

T-CED 272 (NZ): Building %NBS calculator for non-linear pushover method

Endorsed by the Building Structures PIN Committee. January 2013. Version 3.1 Modifications suggested by EL Blaikie April 2013

Project/Task/File No:	Sheet No 73 of	
Project Description:	Office:	
	Computed: / /	
	Check: / /	

	Computed:	/	1
	Check:		1
		1	
- Base shear on stournell wall: 1/b =	220 k	N.	
			9.
1. Vi = 0.6 x Vb = 0.6 > 220 = 132	EN		8
		V C	
- For eff height: heff = 3/2 how = 3/3.	- ~ C		
The state of the s			
- for eff height: heff = 3/3 hot = 3/2	6,17 =	4-1	Im.
- Horizontal Displacement Demanic	1 · X.	= 33	> WWA
1 1 9 %1 /			001
1. town = 20 = 7			
The state of the s			
=> 33 = Y = 51,	8. Wu	۸.	
4100 6440	- A	M	1000
		o ler	HIDE
7 1000 1000		Upl	eft.
Drift: 33. x 100 @ 0.8%.		I	1
4100			

Project/Task/File No:	Sheet No Fd of
Project Description:	Office:
	Computed: / /
	Check: / /

	Uttice:		
	Computed:		/
	Check:	1	/
			-11
Axial Load: N(kN)			
· Solo worldat as			Ω.
+ Self-weight of wall	,	- 9	V
25 × (0.2 × 6.4 × 6.17) - (0.2 × 2.29 × 1.97)	_	171	0
		1774	. 7
· C. D			
olumn self-weight			
25 × 0.38 × 0.38 × 6.2		22.0	1
	:,0,	an, c	7
Strong In Committee Commit			
. Stairflight self-weight			
25 × 0.127 × 3.6 × 4/2		00 0	2
12		22.9	7
Footing self-weight			
25 × 0.914 × 0.46 × 6.74 C		700	
		70.8	
		Till	
		291	El

Modulus of		
Elasticity	E (MPa)	E (kPa)
Concrete walls	25000	25000000
Masonry walls	15000	15000000

$V_{o,\mu=2}(kN)$	1934

Wall Ref. H (m) Thick. t (m) $L_{yy}(m)$ I (m4) E*I EI/SEI V*Demand (kN) W₁b 3.25 0.150 1.700 0.061 921188 0.004 8.17 Concrete block W1a 3.25 0.150 1.700 0.061 921188 0.004 8.17 walls W11 3.20 0.200 7.315 6.524 97854995 0.449 867.42 W12a 3.20 0.150 1.200 0.022 324000 0.001 2.87 W12b 3.20 0.150 1.800 0.073 1093500 0.005 9.69 W12 3.80 0.180 3.910 0.897 22416177 0.103 198.70 concrete W13 In-situ 3.80 0.180 3.910 0.897 22416177 0.103 198.70 W14 3.80 0.200 3.910 0.996 24906863 0.114 220.78 X W15 3.80 0.200 3,910 0.996 24906863 0.114 220.78 W16 3.80 0.180 3.910 0.897 22416177 0.103 198.70 TOTAL 33.265 218177126 1.000 1934.00

Note:

Distribution of forces was based on effective stiffness of walls (blockwalls + in-situ concrete)

DUCTILITY OF

zeleased under FOR GRID B :

M* = \$20 × 4.9 = 1078 MM T*= 1078 = 269,5 = 270 File 4.0 = 269,5 = 270 EN.

@ grid B. on stourmall end

Based on proportion for $\mu=1.25$ \rightarrow $T^*=1.6 \times 270$ $T^*=432 \text{ kN}$.

Project/Task/File No:	Sheet No 76 of
Project Description:	Office:
	Computed: / /
	Check: / /

	Computed: / /
	Check: / /
Tension Capacity on Pile. For $12 \text{ No} = 3/4$ " $\phi \sim 19$ " $\phi \text{ bours}$. $T_{11} = 12 \times 283 \times 300 \times 10^{-3} = 1020$	kN. 2. 382
-1. 9% NBS = 1020 > 100%,	100
16 \$ 830 cms, the flexure capacities is imm = 2190 kNine . (as calculated)	city of wall
HENCE! No issue with rebor yielding of pi	ile &/ wall.

FLEXURE CAPACITY OF WALL Opus International Consultants Limited

Checked:	1	/

WELCOME TO CONPROP(V 1.7) ** AN EXCEL SPREADSHEET FOR CALCULATING: GEOMETRIC PROPERTIES & MOMENTS FOR CONCRETE SECTIONS UNDER **UNCRACKED, CRACKED & ULTIMATE CONDITIONS.**

[Flanges (top and/or bottom) and axial load are optional. For walls/columns see note 2 or the MANUAL.]

STEP 1 Describe the Uncracked Section...

(use consistent units., e.g. N and mm through out the spreadsheet)

Project:		
	Date:	Time:
	18-Nov-15	13:29

Total Section depth (d) =	3900	
Web width (w) =	200	11/10
Top flange width excluding web (b1) =	0	<
Top flange thickness (t) =	0	THESE
Bottom flange width excluding web (b2) =	0	6 values
Bottom flange thickness (b) =	0	may
Axial compressive load (P) and,	200,000	be
Depth from top surface of this load (di)	0	zero
Assumed tensile cracking stress (ft)	0	<
Steel Elastic Modulus (Es)	200,000	

STEP 2 Describe steel sizes and locations.....

describe location of the centroid of up to 10 bar bundles from either the top or the bottom surface. Describe Location of each bundle from only one surface.

Modular ratio	(n=Es*(1+Ct)/Ec) =	8
---------------	--------------------	---

	TOP BAR	RS		воттом в	ARS
No. Bars	Bar Diam	Distance From Top Surface	No of Bars	Bar Diam	Distance From Bottom Surface
2	16.00	50.00	2	16.00	50.00
2	16.00	280.0	2	16.00	280.0
2	16.00	510.0	2	16.00	510.0
2	16.00	740.0	2	16.00	740.0
2	16.00	970.0	2	16.00	970.0
2	16.00	1200.0	2	16.00	1200.0
2	16.00	1430.0	2	16.00	1430.0
2	16.00	1660.0	2	16.00	1660.0
2	16.00	1890.0	2	16.00	1890.0
0	0.00	0.0	0	0.00	0.0

RESULTS FOR UN-CRACKED SECTION ANALYSIS:

(A) IGNORING EMBEDDED STEFL

Section Area (A)	780,000	7.80E+05
Depth Geometric Centroid (Ybar from top)	1950	1.95E+03
Moment of Inertia (Ig)	988650000000	9.89E+11
Cracking Moment (Mcr -tension bottom)	(260,000,000)	-2.60E+08
(Corresponding curvature)	0.0000000052	5.24E-09
Cracking Moment (Mcr - tension top)	520,000,000	5.20E+08
(Corresponding curvature)	0.0000000052	2.10E-08

(b) INCLUDING EMBEDDED STEEL (Using (n-1) times steel area)

Section Area (A)	830,473	8.30E+05
Depth Geometric Centroid (Ybar from top)	1950.0	1.95E+03
Moment of Inertia (Ig)	1054924136790	1.05E+12
Cracking Moment (Mcr -tension bottom)	(259,715,963)	-2.60E+08
(Corresponding curvature)	0.0000000	4.92E-09
Cracking Moment (Mcr - tension top)	520,284,037	5.20E+08
(Corresponding curvature)	0.00000000	4.92E-09

Checked:	,	ā
ounou .		/

STEP 3 Define variables for CRACKED SECTION ANALYSIS

(values entered in STEP 1 may be varied for this part of the analysis.)

Axial compressive load (P) Depth from top surface of this load (di) Crack root tensilo attaca (ac. 2.58)	200,000
Crack root tensile stress (say 0.5ft)	0
	0
	300
* Max tensile steel strain if steel yielding (es) * Steel Elastic Modulus (Es)	300
Steel Elastic Modulus (Es)	0.0015
Modular ratio (n=Fe*(1+C+)/F-)	200,000
Modular ratio (n=Es*(1+Ct)/Ec)	8

 Cracked section results below correspond to the conditions that exist when the Max tensile steel stress reaches Fs (if Fs< or = Fy) or to a yield strain of 'es' (if es>ey). Concrete is assumed to be ELASTIC.

RESULTS FOR CRACKED SECTION ANALYSIS (LINEAR CONCRETE PROPERTIES):

(a) CRACK PROPAGATING FROM BOTTOM -

Depth to N.A. from top (k)		
Total Compression Force incl. completed	3.02E+3 1.06E+6	Ratio T/C =
Curvature (= M/(Fc x lcr.)- where Fc=Fc/=)	1.06E+6 2.19E+9 5.06E-7	1.000 (=1.0 for iteration
Cracked MOI (=Icr from curvature)	1.73E+11	convergence) << Reo centroid=970

(b) CRACK PROPAGATING FROM TOP
D III I I I I I I I I I I I I I I I I I

Depth to N.A. from bottom (k)	8.84E+2 1.12E+1	
Total Tension Force (including P) Total Compression Force -incl. comp steel Flexural Moment (M)SEE NOTE 2 Curvature (= M/(Ec x lcr)- where Ec=Es/n) Cracked MOI (=lcr from curvature) Crack width-mm (NZS3101 deformed bars & RC section only "Bottom' bars & top' bars in compression assumed not to effect crack width	3.02E+3 1.06E+6 1.06E+6 2.97E+9 5.06E-7 2.34E+11 0.34	Ratio T/C = 1.000 (=1.0 for iteration convergence) << Reo centroid=970

** 'Bottom' bars & 'top' bars in compression assumed not to effect crack widths. When tension area (At) > flange area only bars in the tension flange are considered. Reo is assumed approx uniformly distributed in At. (see Note 3 for fuller details)

My = 2194 ENm.

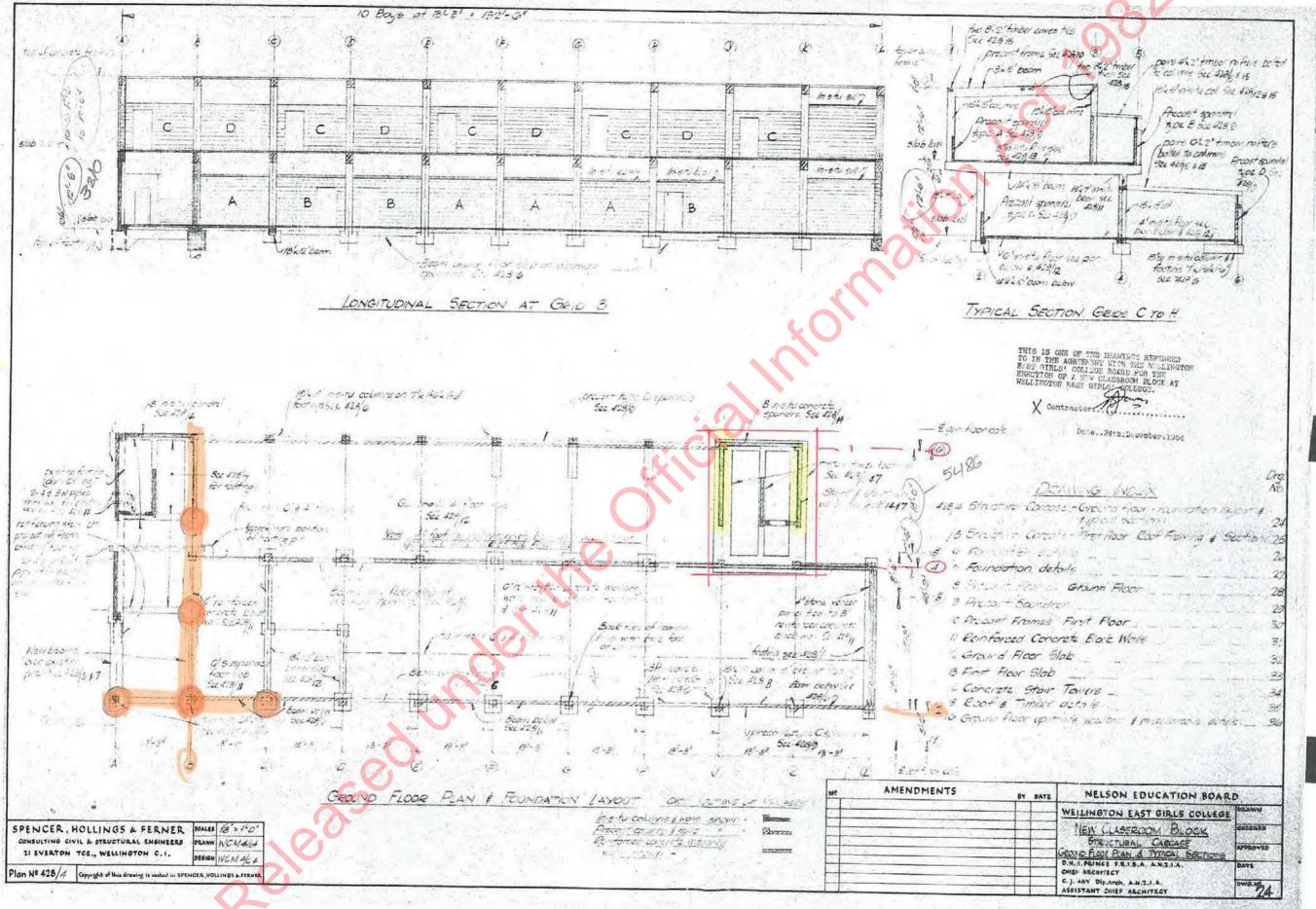
Checked: ____/__/___/

STEP 4 Describe section properties for ULTIMATE conditions.........

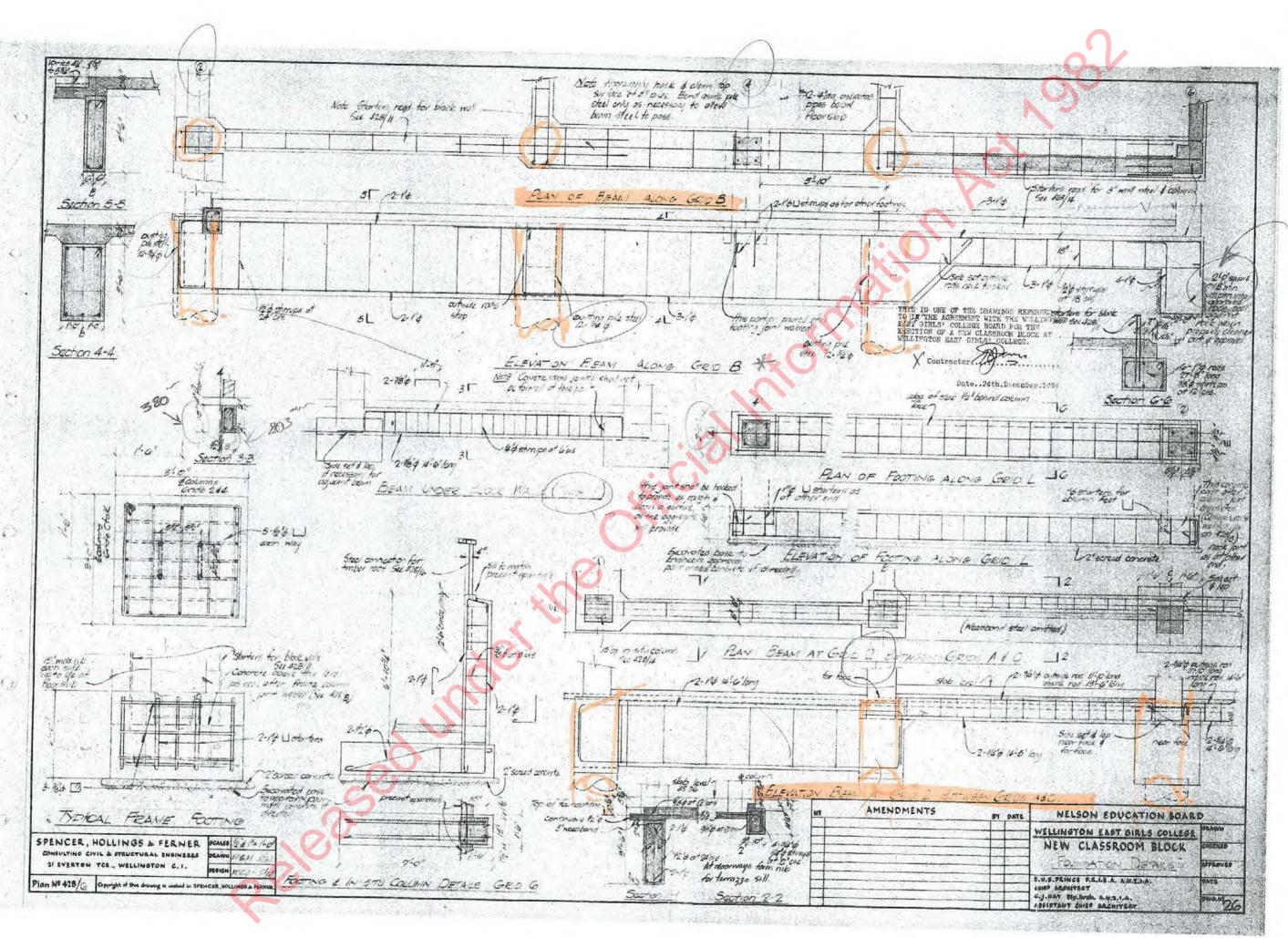
values entered in steps	1&2 may be varied for t	this part of the analysis.)

Concrete ultimate strain (e)	0.003
Ratio of (stress block)/(N.A.) depths	0.850
Axial compressive load (P) and,	200,000
depth from top surface of this load (di)	0
Crack root tensile stress (say 0.5ft)	0.0
Concrete Elastic Modulus (Ec)	25,084
Concrete compressive strength (fc)	30
Steel Elastic Modulus (Es)	200,000
Steel Yield Stress (Fy)	300

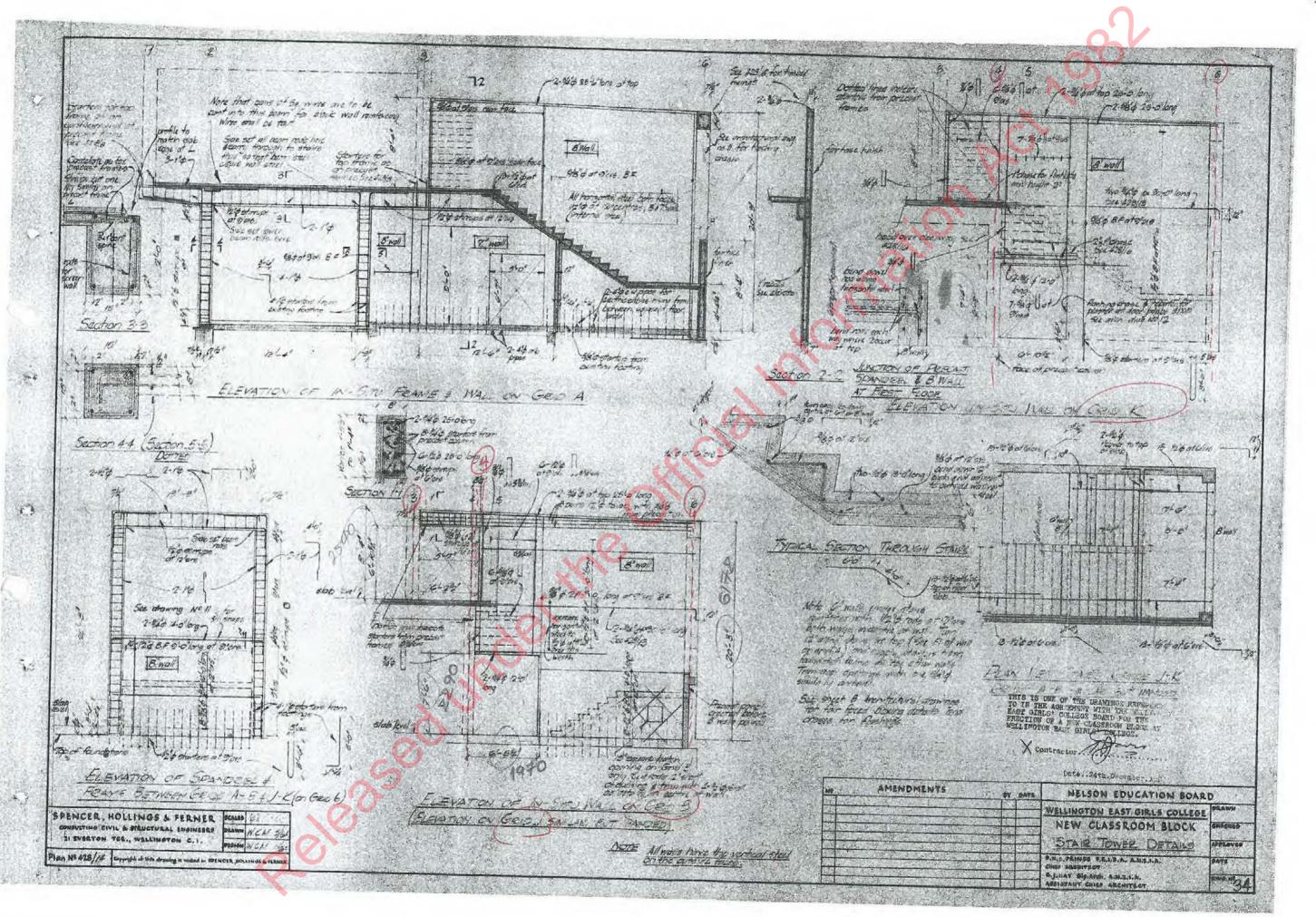
Analysis results shown below correspond to the conditions that exist when the peak compression strain equals (e) given above. A rectangular stress block with average stress=0.85f'c is assumed.

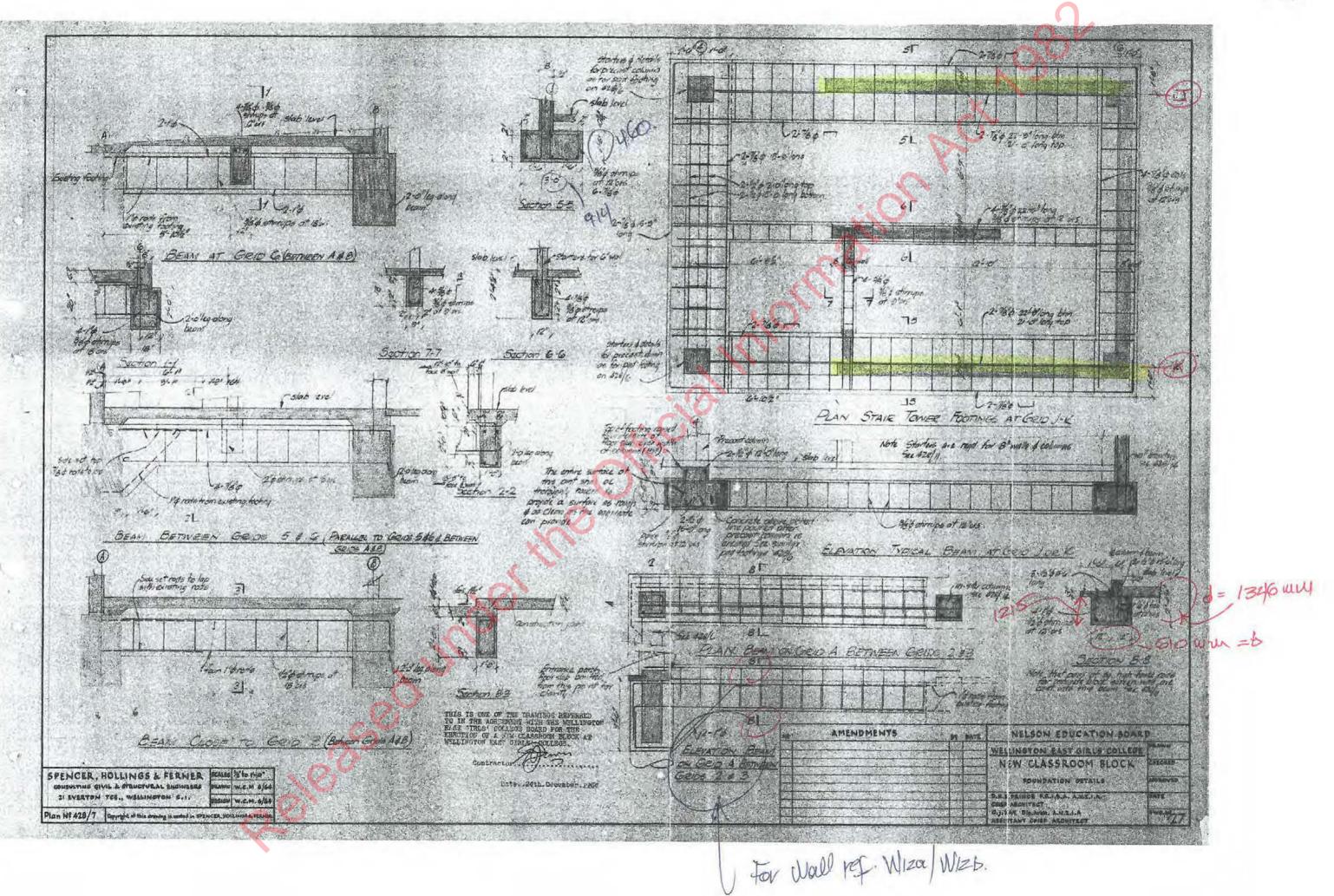

RESULTS FOR ULTIMATE MOMENT SECTION ANALYSIS:

(a) CRACK PROPAGATING FROM BOTTOM


Depth to N.A. from top (c)	4.31E+02	
Steel Stress (Maximum Tension)	3.00E+02	
Crack Depth	3.47E+03	
Total Tension Force (including P)	2.05E+06	Ratio T/C =
Total Compression Force -incl. comp steel	2.05E+06	1.000
Ideal Flex strength (Mi)SEE NOTE 2	3,79E+09	(=1.0 for iteration
Section Curvature (from curv = e/c)	6.96E-06	convergence)

(b) CRACK PROPAGATING FROM TOP


Depth to N.A. from bottom (c)	4.31E+02	
Steel Stress (Maximum Tension)	3.00E+02	
Crack Depth	3.47E+03	Market and the second
Total Tension Force (including P)	2.05E+06	Ratio T/C =
Total Compression Force -incl. comp steel	2.05E+06	1.000
Ideal Flex strength (Mi)SEE NOTE 2	4.57E+09	(=1.0 for iteration
Section Curvature (from curv = e/c)	6.96E-06	convergence)
Section curvature (nom curv = atc)	75.355.45	,



1 %

G10×610 × 460 dea

Appendix B

Hormation Photos of Building Released under the

Photo 1: North elevation showing veneer on top floor infill panel

Photo 2: North-west corner elevation showing cracking at the additional column on west elevation

Photo 3: North end of West elevation with the short height of precast panels only at first floor level

Photo 4: West elevation having additional perimeter columns at ground floor to line up with original perimeter columns at first floor level

Photo 5: Mid-section of West elevation

Photo 6: Details of the concrete spalling at first floor level and the horizontal cracking of the additional perimeter columns at ground level

Photo 7: Addition of east elevation at north end

Photo 8: View of the concrete block walls at ground and metal cladding with timber framing at first floor.

Photo 9: East elevation

Photo 10: Detail of east elevation with the original precast panels at ground floor level

Photo 11: Corridor at ground floor level showing the addition/extension

Photo 12:Same elevation with new timber partition walls

Photo 13: Corridor at ground floor level showing Photo 14: Same elevation further along the block wall line

Photo 15: End of original concrete frame at ground at the corridor side

Photo 16: Concrete frame at ground floor towards the west end with the new column along perimeter

Photo 17: Corridor at 1st floor towards west elevation with the original concrete block walls

Photo 18: Corridor at 1st floor towards the east elevation with the new timber wall additions

Photo 19: Opening/ floor void facing towards the east elevation with part of the addition at 1st floor

Photo 20: Typical classroom at 1st floor facing at west elevation

Appendix C

Plans of Building Released under the

Wellington East Girls College: Source (LINZ Data Service)

