

Te Tāhuhu o te Mātauranga

Wellington East Girls College

Block 8 – Science

Detailed Seismic Assessment

Template V.1.2 28/01/2016 **Prepared By: Opus International Consultants** For the Ministry of Education Earthquake Resilience Programme

Document Control Records

Telephone:	04 471 7000
Email:	info@opus.co.nz
Web:	www.opus.co.nz

Revision History

Docume	nt Prepared by:		
Opus Int	ternational Ltd		
L8, Maje	estic Centre, 100 V	Villis Street, Wellington	
PO Box	12005, Wellington	6144	
Telephon Email: Web: Revisic	ne: 04 471 7 info@op www.opu on History	000 us.co.nz is.co.nz	mationAct
Revision No.	Prepared By	Description	Date
0	9(2)(a)	Draft for review	24/09/2015
1		Draft for review	07/10/2015
2		Final	28/01/2016

Document Acceptance

Action	Name	Signed	Date
Site Visit by	9(2)(a)		28/01/2016
Prepared by	y:		28/01/2016
Reviewed b CPEng #	yy:		28/01/2016
Approved b CPEng #	iy:		28/01/2016

Executive Summary

This building report provides the results of a Detailed Seismic Assessment completed for the following building by the Ministry of Education's Engineering Panel. The report provides a detailed assessment of the building's %NBS seismic capacity, highlights the key seismic risks and presents recommendations for improvements to mitigate potential risks. The table below presents a summary of the assessment findings.

School	Wellington East Girls College
Block No (PMIS).	6549
Block Name/Description	Block 8 - Science
Known Standard Design	Non-standard
Storeys:	2
Year of Design (approx.)	1983
Gross Floor Area (m ²)	833
Construction Type	Reinforced concrete masonry walls
Assessment Type	Detailed
Date Building Inspected	10 September and 17 September 2015
Importance Level	IL3
Structural Assessment Summary	The assessment was based upon a physical internal and external walk around, reviewing drawings and undertaking a detailed structural analysis. The roof space was accessed to review the seismic support of non-structural elements.
Stairs	The two reinforced concrete stairs are tied to reinforced concrete masonry walls; therefore the stairs have low displacement demands and are not expected to be damaged in an earthquake.
Current %NBS estimate	76% NBS
List specific CSWs and life safety hazards	None
Occupancy Considerations	No need to change the building's current occupancy.
Conclusions & Recommendations	Block 8 – Science has an estimated seismic capacity of 76%NBS when assessed as an IL3 building. The governing factor is the pile foundations. Overall, Block 8 is classified as not earthquake prone, as defined in the
OPUS	Revision 2 28/01/2018

	Building Act 2004. The building is classified as a low earthquake risk in accordance with NZSEE guidelines.
	We recommend that high level glass is checked to confirm if a film or safety glass has been installed. If not, options to strengthen the glass should be explored and implemented to avoid injury if the glass is broken.
Rough order of cost estimate for seismic improvements (where required)	Nil
Timeline for remediation if required	Not applicable

Commentary:

Block 8 – Science is supported by pile foundations which extend through a layer of fill to the rock below. The rock profile is known to slope downwards in the northern direction and so the lengths of the piles vary. The pile lengths vary from 1m to 5m according to the drawings. As the exact rock profile is not known, assumptions have been made regarding the rock profile and pile depths. Therefore the assessment of the piles is an approximate analysis.

The main limiting aspect for the building is the pile foundations loaded in the transverse direction. The piles are governed by their flexural capacity. As the pile plastic hinge zones are well confined a ductility of 3 was assumed.

Lateral Load Resisting System

In both the longitudinal and transverse directions the lateral loads at roof level are distributed through a timber diaphragm to reinforced concrete masonry walls.

The lateral loads at first floor level are distributed through the rigid concrete diaphragm to the reinforced concrete masonry walls.

The lateral loads in the reinforced concrete masonry walls are transferred to the ground through reinforced concrete pile foundations which are founded in rock.

elease

Table of Contents

Exe	cutive Summary
1.	Introduction4
2.	Building and Site Description5
3.	Seismic Capacity of the Building6
	3.1 Analysis Methodology
	3.2 Intrusive Investigations
	3.3 Assessment Criteria and Building Properties Assumptions
	3.4 Seismic Capacity Assessment
	3.5 Structural Weaknesses & Life Safety Hazards
4.	Seismic Improvements
	4.1 Suggested Improvements
	4.2 Rough Order of Cost Estimate
5.	Conclusions & Recommendations15
	5.1 Conclusions
	5.2 Recommendations
6.	Explanatory/Limitations Statement
	undert
Rele	3350

1. Introduction

This report provides the results of a Detailed Seismic Assessment (DSA) completed for this building by the Ministry of Education's Seismic Assessment Panel. The report provides an assessment of the building's seismic capacity, highlights the key risks and presents recommendations.

Specifically, this report:

- Provides an assessment of the building's capacity in terms of percentage of New Building Standard (%NBS) as defined in New Zealand loading standard NZS 1170.5:2004.
- Identifies any specific Critical Structural Weaknesses (CSWs) or life safety hazards associated with the building and presents recommendations for seismic improvements (if required).

The assessment has involved the following:

- Review of calculations, drawings, specifications and geotechnical information where available.
 - Architectural drawings of Wellington East Girls College Science Building by the Ministry of Works dated 1983. Job Number 5/235/10/7501, sheets 100 to 124.
 - Structural drawings of Wellington East Girls College Science Building
- The roof space was accessed to review the seismic support of non-structural elements.
- Undertaking detailed analysis to determine the seismic strength of the building in accordance with current New Zealand design and material standards to determine the buildings compliance with current building code requirements.
- Where elements of the building have been identified as not meeting acceptable levels of seismic strength, recommendations for seismic improvements are made. Rough order of cost estimates for the structural improvements are included where they are recommended.

For further background information on the Detailed Seismic Assessment (DSA) process please refer to the Ministry of Education website - this includes commentary and relevant context on Building Act compliance requirements.

2. Building and Site Description

Number of Storeys	2
Gross Floor Area (m ²)	833
Year of Design (approximate)	1983
Current use	Teaching Spaces
Structural Alterations	None
Basement	None
Gravity Load Resisting System	Reinforced concrete masonry walls.
Lateral Load Resisting System	Reinforced concrete masonry walls.
Wall/Cladding/Roof System	Plaster clad concrete masonry walls, the roof system is timber roof trusses supporting lightweight cladding.
Floor System	The first floor is a precast interspan concrete rib and timber infill system with a 90mm concrete topping.
Foundation System	Concrete slab on ground beams supported by reinforced concrete piles.
dertit	Based upon the results of the Opus Geotechnical report dated March 2013, the subsoil classification for the site is considered to be Class B in accordance with NZS 1170.5:2004.
Geotechnical Considerations	Block 8 is underlain by rock. Part of the building is situated on fill, above the rock layer which slopes downwards in the northern direction. The building is founded directly on rock in some areas and on piles extending to the rock in other areas.
	The liquefaction potential for the site is assessed as nil or low due to rock at shallow depth and the groundwater table being at depth at rock/soil interface at thicker fill areas.

Refer to photos of building in Appendix B and site plan in Appendix C that will assist with understanding building description.

3. Seismic Capacity of the Building

3.1 Analysis Methodology

The building was designed in 1983 by the Ministry of Works. The applicable design code at this time was NZS 4203:1976.

An equivalent static analysis of the building was completed due to the simple geometry and regular layout of the structure. The first floor slab acts as a rigid diaphragm and therefore loads were distributed to the masonry walls based on their relative stiffness, and by tributary areas in some cases.

The elements reviewed were the diaphragm connections, structural walls, foundations and retaining walls. These reinforced concrete and reinforced concrete masonry elements were assessed using NZS 3101:2006, NZS4230:2004 and NZSEE (2006).

The diaphragm connections were analysed using the principle of shear friction.

Longitudinal loads are resisted primarily by the two full height classroom walls. The front wall has multiple openings and was analysed as a frame. The second longitudinal wall and the transverse walls are squat walls with few openings. These walls analysed as shear walls. The transverse walls were checked for a rocking response.

The pile foundations were analysed as being fixed at the rock layer due to the embedment of the piles. The contribution of the fill was neglected. As the exact rock profile is not known, assumptions have been made regarding the rock profile and pile depths. Therefore the assessment of the piles is an approximate analysis.

Part of the rear wall of the building is retaining soil. The seismic capacities of this wall and the reinforced concrete retaining wall beside the building were analysed. The loads acting on these retaining walls were determined using Coulomb sliding wedge theory.

The crib walls behind the building were not reviewed.

There were no historical/original calculations available to assist with the assessment.

3.2 Intrusive Investigations

No intrusive investigations were carried out. Material strengths have been assumed based on the age and condition of the building.

3.3 Assessment Criteria and Building Properties Assumptions

The following table summarises the principal parameters used for the derivation of earthquake loads and the analysis of the building.

Parameter	Value
Design Working Life (remaining)	50 years
Importance Level	3
Return Period Factor (R)	1.3
Site Subsoil Classification	В
Period (seconds)	0.4 seconds (longitudinal direction) 0.4 seconds (transverse direction)
Hazard Factor (Z)	0.40 (Wellington)
Near Fault Factor (N)	1.0
Ductility Factors	1.25 (Diaphragm)1.25 (Walls in shear)2.0 (Walls in flexure)3.0 (Piles)
SP Factor	0.9 (Ductility = 1.25) 0.7 (Ductility ≥ 2)

The following table summarises the probable material strengths utilised in the assessment.

Material 🔰	Probable Strength
Concrete – Compressive Strength	fc=30MPa
Concrete Masonry Block Walls – Compressive Strength	f _m = 12MPa
Steel Reinforcement – Yield Strength	fy = 325MPa

These material properties have been assumed given the age and condition of the building. There was no information provided on any structural drawings.

3.4 Seismic Capacity Assessment

The following table summarises the %NBS capacity for the various seismic resisting elements in the building based on the detailed seismic analysis.

Element	%NBS Capacity	Commentary	
Foundations	76%	Transverse loading, governed by pile flexure	
Reinforced concrete masonry walls	>100%	Transverse and longitudinal	
Diaphragm connections	>100%	Transverse and longitudinal	
Reinforced concrete masonry retaining wall behind Hot Water Room	>100%	Assessed at IL3	
Reinforced concrete retaining wall beside building entrance	>100%	Assessed at IL2	

The assessment confirms that the building achieves an overall seismic capacity of 76% NBS.

This corresponds to a "Grade B" building as defined by the New Zealand Society for Earthquake Engineering (NZSEE) building grading scheme.

3.4.1 Foundations

The connections between the pile foundations and the ground beams are detailed as pins. The piles, which have a specified minimum embedment into rock of 1m, were assessed as cantilevering from the rock layer. The 76%NBS rating for the foundations is governed by the piles subject to transverse loading. The rock profile is assumed to vary linearly from 1m to 4m depth under the transverse walls. The piles are governed by their flexural capacity. As the pile plastic hinge zones are well confined a ductility of 3 was assumed.

In the longitudinal direction the rock profile is assumed to be flat. Therefore the piles are equally loaded in this direction and the transverse direction is critical.

3.4.2 Masonry Walls

All load resisting masonry walls have an estimated seismic capacity of greater than 100%NBS. The front longitudinal wall which acts as a frame is governed by pier hinging. Therefore a ductility of 2 was assumed. The other walls act as shear walls and a ductility of 1.25 was assumed.

3.4.3 Diaphragm Connections

The diaphragm connections were assessed using the principle of shear friction, assuming a potential crack at the interface of the diaphragm and the masonry walls. The diaphragm connections have an estimated seismic capacity greater than 100%NBS.

3.4.4 Retaining Walls

Part of the external building wall at the southern side of the building is retaining soil (Figure 1). As the wall is part of the building it was assessed as a retaining wall at IL3. This wall has an estimated seismic capacity greater than 100%NBS. , ct 1982

Figure 1: Reinforced concrete masonry retaining wall

There is a reinforced concrete retaining wall beside the building entrance (Figure 2). Sliding or tilting of the retaining wall is not expected to have an effect on the accessibility or structural performance of the Science Block. Therefore the IL3 building rating need not apply to the retaining wall which is considered an IL2 structure in accordance with AS/NZS 1170.0:2002. The retaining wall has an estimated seismic capacity greater than 100%NBS.

Figure 2: Reinforced concrete retaining wall

20102500 1111

3.5 Structural Weaknesses & Life Safety Hazards

3.5.1 Potential Critical Structural Weaknesses

None identified.

The first floor concrete diaphragm connections have a seismic capacity greater than 100%NBS and are not considered to be a critical structural weakness.

The seating of the flooring is not considered to be a critical structural weakness. Although the seating length could not be verified on site, based on scaling of the relevant drawing detail the seating length is estimated to be approximately 40mm. The flooring is tied to the masonry walls with L bars.

3.5.2 Specific Critical Structural Weaknesses

None identified.

3.5.3 Stairs

The two reinforced concrete stairs are tied to reinforced concrete masonry walls; therefore the stairs have low displacement demands and are not expected to be damaged in an earthquake.

3.5.4 Secondary Structural Weaknesses & Life Safety Hazards

The ground floor classrooms have heaters that are suspended from the first floor (Figure 3) and the first floor classrooms have heaters that are suspended from the ceiling (Figure 4). These heaters do not appear to be seismically restrained and are suspended a reasonable distance. Therefore these heaters are a *potential* life safety hazard. We recommend that the seismic restraint of these heaters be reviewed in more detail to confirm whether or not the heaters are a life safety hazard.

Figure 3: Heater in ground floor classroom

eleased

198'

Figure 4: Heaters in first floor classroom

The mechanical and electrical plant in the roof space is not considered a secondary structural weakness or life safety hazard. The roof space was inspected on September 17 to review the seismic support of this plant.

The rigid ducting in the roof (Figure 5) which spans over the roof truss chords and masonry walls is not positively fixed to the primary structure. The sections of ducting are relatively long, spanning over multiple supports. Although the ducting may attain some damage in a ULS event, loss of support is not possible. Therefore there is no issue with the seismic support of the rigid ducting.

Figure 5: Rigid ducting

eleased The pipes in the roof space are hung from rigid hangers (Figure 6) and propped up by rigid hangers (Figure 7). The pipe hangers are less than 150mm long and therefore the pipes do not require specific seismic restraint in accordance with NZS 4219:2009.

, ct 1982

Figure 6: Pipe hangers

Figure 7: Pipe support

The extractor fans in the roof space are positively fixed to the primary structure and the extractor fan exhausts are restrained with steel angle frames (Figure 8). The intakes and exhausts appear to be attached to the extractor fans with flexible joints to allow for differential movement. The extractor fan plant is considered to have adequate seismic support.

201025

ACt 1982

4. Seismic Improvements

4.1 Suggested Improvements

- Reparent of the official months of the offi

5. Conclusions & Recommendations

5.1 Conclusions

The building achieves an overall seismic capacity of 76% NBS when considered as an Importance Level 3 building. This meets the Ministry of Education's medium term goal of 67% NBS or above.

There is no need to change the buildings current occupancy.

5.2 Recommendations

u Jesa Chicanntonne Chicanntonn The building satisfies the Ministry of Education's desired minimum seismic strength capacity of 67% NBS and no seismic improvements are considered necessary for this building.

6. Explanatory/Limitations Statement

- This report contains the professional opinion of Opus International Consultants as to the matters set out herein, in the light of the information available to it during preparation, using its professional judgment and acting in accordance with the standard of care and skill normally exercised by professional engineers providing similar services in similar circumstances. No other express or implied warranty is made as to the professional advice contained in this report.
- We have prepared this report in accordance with the brief as provided and our terms of engagement. The information contained in this report has been prepared by Opus International Consultants at the request of its client, the Ministry of Education, and is exclusively for its use and reliance. It is not possible to make a proper assessment of this report without a clear understanding of the terms of engagement under which it has been prepared, including the scope of the instructions and directions given to and the assumptions made by Opus International Consultants. The report will not address issues which would need to be considered for another party if that party's particular circumstances, requirements and experience were known and, further, may make assumptions about matters of which a third party is not aware. No responsibility or liability to any third party is accepted for any loss or damage whatsoever arising out of the use of or reliance on this report by any third party.
- The report is also based on information that has been provided to Opus International Consultants from other sources or by other parties. The report has been prepared strictly on the basis that the information that has been provided is accurate, complete and adequate. To the extent that any information is inaccurate, incomplete or inadequate, Opus International Consultants takes no responsibility and disclaims all liability whatsoever for any loss or damage that resulting from any conclusions based on information that has been provided to Opus International Consultants.

eleased under the

Appendix A

Ase as a second second Detailed Seismic Assessment Calculations

Released under the

OPUS

Released under the Official Information Act, 1982

Project/Task/File No:	Sheet No	0	f
Project Description:	Office:		
	Computed:	1	1
	Check:	1	1

<u>Contents</u>	<u>Sheets</u>
section A - Loads	51-9
5 Capacity of Walls In-Plane	10-26
Section B - Foundations	B1-B12
- Diaphragm Connections	B13 - B14
- Retaining Halls	B15- B2(
Section C - Conprop	c1 - <12
- Microstran - Frame	C13- C21
Introduction Nall	C22 - C23
HEGC Science Block is a 2 storey RC Masonry	building
. Timber roof	
 Rib & timber infill 1st Floor 2 RC stairs 	
Part of South external wall retaining soil	
· Pile foundations founded in rock through fill.	
Analysis	
Transverse mails and Gridline B (wallsbloacturas shear wa	115 1
Front of building acts as a frame.	
	OPUS

Project/Task/File No:	Sheet No	2	of
Project Description:	Office:		
	Computed:	1	1
	Check:	1	1

Building Weight

Roof is approx 40mx 14m

Allow 0.4kPa

Wroof = 0.4×40×14 = 224 kN

Halls

Roof

Majority of walls are fully grouted 20 series blockwork, with plaster

finish or timber framing on either side.

Assume 22 kn/m3.

Take wall thickness as 210mm at 22kN/m3 (Allowance of 20mm for finish/

timbe framing - equivalent weight of block) >> 4.6 kPa Reduce to 4.0 kPa to account for openings:

Ground floor RL = 59.6 Ist floor RL = 63.22s 2nd storey = 4.0 m

Ceiling RLO= 67.225

Full Height Masonry (arid Al -> B6) [4.0kpa]

Gridline	Height	Length	Weight	Proportion	to :		WI	W2
00	(~)	(~~)	(KN)	Ground	1st	Roof	(kN)	(kN)
A	8.6	40	1582	1.8/8.6	3.8/8.6	3/8.6	608	480
ß	8.6	18	712	n	н	u	274	216
	7.8	22	789	1.8/7.8	3.8/7.8	2.2/7.8	335	194

Transverse walls (Total 6)

7.8 926 1938 11 11 11 1821

Parapet

2

3.8

1.8

(

Project/Task/File No:	Sheet No 3 of	
Project Description:	Office:	
	Computed: /	1
	Check: /	1

$\frac{3.6m}{4} + alls around shirs}$ $\frac{1}{4argH} = 244m$ $H_{1} = 4.0 LeRa x 1.8 x 24 = 1436m$ $\frac{Part Height Masonny}{(x,y)} + \frac{Part Height (x,y)}{(x,y)} + Part $		Par	+ Height	Masony	(Grid 61 -> D6)	[4.6kpa]
$\begin{aligned} & \text{length} = 24 \text{ m.} \\ & \text{H}_{i} = 4.0 \text{ k.Pa x } 1.8 \text{ x } 24 = 143 \text{ km} \\ & \underline{Part Height Maconny} \\ & \text{Cridline Height(m) length Weight Proportion to 1st fl W1 (km)) \\ & \text{Level} \\ & \text{C} & 4.8 & 5x2 & 221 & (4.8-1.8) & (4.9) \\ & \text{C} & 24.8 & 5x2 & 221 & (4.8-1.8) & (4.9) \\ & \text{D} & 4.6 & 2.7 & 5.71 & (4.6-1.8) & (4.6 & 3.03) \\ \hline & \text{D} & 4.6 & 2.7 & 5.71 & (4.6-1.8) & (4.6 & 3.03) \\ \hline & \text{Transvece walls.} & & & & & & & & & & & & & & & & & & &$	3.6m w	ialls around s	tairs			2
$ \begin{split} & H_{1} = 4.0 \text{ kPa x } 1.8 \text{ x } 24 = 173 \text{ km} \\ & \underline{Pact Height Masconny}. \\ \hline \\ & \text{Gridline} & \text{Height (m)} & \underline{Iangth} & Weight & Proportion to 15t fill & W_{1} (km) \\ & (m) & Iavel \\ \hline \\ & (m) & (m) & Iavel \\ \hline \\ & (m) & (m) & Iavel \\ \hline \\ & (m) & (m) & Iavel \\ \hline \\ & (m) & (m) & Iavel \\ \hline \\ & (m) & (m) & Iavel \\ \hline \\ & (m) & (m) & Iavel \\ \hline \\ & (m) & (m) & Iavel \\ \hline \\ & (m) & (m) & Iavel \\ \hline \\ & (m) & (m) & Iavel \\ \hline \\ & (m) & (m) & Iavel \\ \hline \\ & (m) & (m) & Iavel \\ \hline \\ & (m) & (m) & Iavel \\ \hline \\ & (m) & (m) & (m) & Iavel \\ \hline \\ & (m) & (m)$	length =	24m				00
Part Height Masonny Gridline Height (m) langth Weight Proportion to 1st fill W1 (km) C 4.8 5×2 221 (4.8-1.8) 14.8 120 D 4.6 2.7 5.11 $(4.6-1.8)/4.6$ 303 Transverse walls S.4 2×2 297 $(5.4-1.5)/5.4$ 57 Total WI. of Masonry $480+N$ $480+N$ $480+N$ Timber Walls - Allow 0.4kPa $480+N$ Zi W2 = 1366km $410+0.4kPa$ $460+5$ $410+0.4kPa$ Refer Sheet 1 $460+5$ $410+0.4kPa$ Refer Sheet 1 $410+0.4kPa$ $410+0.4kPa$ Height = 2m on average $41+0.4kPa$ $410+0.4kPa$ $410+0.4kPa$ Height = 1m $410+0.4kPa$ $410+0.4kPa$ $410+0.4kPa$ Height = 2m on average $410+0.4kPa$	W, = 4,	0/2Pax 1.8 x	24 = 173	sknl		
Gridline Height(m) langth Normal Height Proportion to 1st fit Hit (km) C 4.8 $5x2$ 221 (4.8-1.8) 14.8 120 D 4.6 27 571 (4.8-1.8) 14.8 120 D 4.6 27 571 (4.8-1.8) 14.8 303 Transvese walls S.4 $2x2$ 9972 $(5.4-1.5)$ $/5.4$ 57 Transvese walls S.4 $2x2$ 9972 $(5.4-1.5)$ $/5.4$ 57 Transvese walls S.4 $2x2$ 9972 $(5.4-1.5)$ $/5.4$ 57 Transvese walls S.4 2.4 S.4 2.591 km Total Wh. of Masonry Timber Walls - Allow 0.4 kPa Timber Walls - Allow 0.4 kPa Timber Walls - Allow 0.4 kPa Mails around stairs Langth (around toilets)		- t-	Pa	+ Height Ma	sony	N
C 4.5 $5x2$ 221 (4.8-1.8) (4.8 303 D 4.6 2.7 $5+1$ (4.6-1.8) (4.6 303 Transverse walls S.4 $2x2$ 99 (5.4-1.5) (5.4 57 480 kN Total Wk of Masoary $2W_1 = 2038 + 173 + 480 = 2691 kN$ $2W_2 = 1366 kN$ Timber Walls - Allow 0.4 kPa Refer Sheet 1 Height = 2m on average $U_1 = 0.4 x24 x 2 = 19kN$ Full height (around Toilets) Kangth = (3m Height = 6m	Gridline	Height (~)	Length (m)	Weight (kN)	Proportion to 1st A. Level	W1 (EN)
D 4.6 27 571 (45 1^{16}) /4.6 303 Transvese walls 5.4 2×2 99 (5.4-1.5) /5.4 57 480 km Total Wil. of Masonry $IW_1 = 2038 + 173 + 480 = 2691 km$ $IW_2 = 1366 km$ Timber Walls - Allow 0.4 kPa Refer Sheet 1 Height = 24m Height = 24m Height = 24m Height (around toilets). Length = 13m Height = 6m	C	4.8	5x2	221	(4.8-1.8) (4.8	120
Transvese walls S.4 2×2 99 $(S.4-1.5)/S.4$ 51 Total WI. of Masonry IW ₁ = 2038 + 173 + 480 = 2691 kN Timber Walls - Allow 0.4 kPa Timber Walls - Allow 0.4 kPa Timber Walls - Allow 0.4 kPa Allow 0.4 kPa Mails around stairs Length = 24 m Height (around stairs) Length (around toilets) Length = 13 m Mails (around toilets) Length = 6 m	D	4.G	27	571	(4.6 - (1.8)) / 4. 6	303
5.4 2×2 99 $(5.4-1.5)/5.4$ 57 4804N Total W. of Masonry $2 W_1 = 2038 + 173 + 480 = 2691 \text{ kN}$ $2 W_2 = 1366 \text{ kN}$ $\overline{1000} - 41000 - 4469a$ Refer Sheet 1 Halls around stairs Length = 24 m Height = 2m on average $W_1 = 0.4 \times 24 \times 2 = 19 \text{ kN}$ Full Leight (around Toilets). Length = (3m) Height = 6m	Transverse	halls			<i>(C)</i>	
Total WI. of Masonry $IW_1 = 2038 + 173 + 480 = 2691 \text{ kN}$ $IW_2 = 1366 \text{ kn}$ Imber Walls - Allow 0.4 kPa Pefer Sheet 1 Hailts around stairs LengtL = 24 m Height = 2 m on average $U_1 = 0.4 \times 24 \times 2 = 19 \text{ kN}$ Full height (around Toilets) Length = (3 m) Height = 6 m		5.4	2×2	790	(5.4-1.8) /5.4	57
Total WI. of Masonry $IW_1 = 2038 + 173 + 480 = 2691 \text{ kN}$ $EW_2 = 1366 \text{ kN}$ <u>Timber Walls</u> - Allow 0.4 kPa Refer sheet 1 Halls around stairs Length = 24 m Height = 2 m on average $U_1 = 0.4 \times 24 \times 2 = 19 \text{ kN}$ <u>Full height (around Toilets)</u> Length = 13 m Height = 6 m						450 EN
Timber Walls - Allow 0.4kPa Refer sheet 1 Halls around stairs Length = 24 m Height = 2m on average U ₁ = 0.4 × 24 × 2 = 19kN <u>Full height (around Toilets)</u> Length = (3m Height = 6m	IW1 = : IW1 = :	2038+173+1 366 km	+ 50 = 26	Saikn		
Halls around stairs Length = 24 m Height = 2m on average $W_1 = 0.4 \times 24 \times 2 = 19 \text{ kN}$ <u>Full height (around Toilets)</u> Length = (3m Height = 6m	Timber Referos	Walls - A theet 1	llow 0.4kf	² a		
Length = 24 m Height = 2m on average H ₁ = 0.4 × 24 × 2 = 19kN <u>Full height (around Toilets)</u> Length = (3m Height = 6m	Halls are	ound stairs				
Height = 2m on average H ₁ = 0.4 × 24 × 2 = 19kN <u>Full height (around Toilets)</u> Length = 13m Height = 6m	length = :	24 m				
H ₁ = 0.4 × 24 × 2 = 19kN <u>Full height (around Toilets)</u> Length = 13m Height = 6m	Height =	2m on aver	age			
Full height (around Toilets) Length = (3m Height = 6m	W1 = 0.4	+ x 2 + x 2 = 1	7 LN			
Height = 6m OPU	Full heid	ght (around	Toilets)			
Height = 6m OPU	Length	= (3 m				
	Height	= 6 m				OPUS

	Sheet No 4	of
ct Description:	Office:	
	Computed:	1 1
	Check:	1 1
TTTTTTTTTTTTTTTTTTTTTTTTTTTTT		
W, = 0.4× 13×6 = 31/201		
around Floor Timber		
4200 th = 9 + 4 + 6 = 19 - 0		N
	×	
1.8 ~ contributing	n C	
$W_1 = 0.4 \times 1.8 = 14kN$		
First Elage Ticler	A H	
	~	
Length = 12m		
UI= lokn		
4.0		
Total Wt of Timber Halls		
W = 19+31+14+10 = 74kN		
M2 = 10KN		
Floor		
hump weight of stairs into floor weight		

C

C

C

Floor is Stahlton Ribs at 900 centres with 90mm conc infill on 25mm timber.

(ISO)

¥ 90

175

OPUS

6

C

ct Description:	
	Utfice:
	Computed: /
Wf. of ribs = $24 \times 0.15 \times 0.175 = 0.7 \text{ kPa}$ 0.9 2.9 2.9 2.9 2.9 2.9	
Wf. of slab = 24 × 0.09 = 2.16 kPa	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
WELLON = 2.9 kPa × 440 = 1276 kN	×
Ling)	PC
Imposed Load	<u> </u>
Allow Q = 3kPa (classrooms)	× O'
$\psi_{\epsilon} = 0.3$	0
Wimposed = 3×0.3×440 = 396kN	
Total Building Weight	
W1 = Masonry + Timber walls + Floor + Imposed	
= 2691 + 74 + 1276 + 396 = 4437 kN	
W2 = Roof + Masonry walls + Timber walls	
= 224 + 1366+ 10 = 1600 kN	
W. = 6037 kN	
9	

Job Title: WEGC Science Block DSA Job Number: 5-PA010.37 Calcs By: MJG

Member Reference: Date: 4/09/2015 1:33:32 p.m.

morm

12

Report created using Seismic Shear forces to NZS1170.5 Design Tool Version 1.1

HORIZONTAL SEISMIC SHEAR (V) TO NZS 1170.5

Input Data

Period (T) = 0.2 sec Site Classification A/B Equivalent Static Method Hazard Factor (Z) (See Table 3.3) = 0.4 Importance level of 3 Design Working Life of 50 Years ULS Ductility (mu) = 1.25 SLS1 Ductility (mu) = 1.0 ULS Structural Performance Factor (Sp) = 0.9 SLS Structural Performance Factor (Sp) = 0.7 Seismic Weight (Wt) = 6037 kN

ULS Results

ULS Return Period of 1/1000 Spectral Shape Factor Ch(T) = 1.890Return period factor from table 3.5 (Ru) = 1.30 Near Fault Factor N(T,D) = 1.000 Elastic Site Spectrum C(T) = 0.9828 Ductility Factor k(mu) = 1.143 Design Action Coefficient Cd(T) = 0.774 Horizontal Seismic Shear = **4672** kN

SLS1 Results

Return Period of 1/25Return period factor (Rs) = 0.25 Elastic Site Spectrum C(T) = 0.1890 Ductility Factor k(mu) = 1.000 Design Action Coefficient Cd(T) = 0.132 Horizontal Seismic Shear = **799** kN Act 198

Ration

ſ

Job Numb Calcs By:	WEGC Science B er: 5-PA010.37 MJG	IOCK DSA	Member F Date: 4/09	eference: 0/2015 1:37:33 p.m.	0
Report cre	ated using Seism	ic Shear forces	to NZS1170.5 E	Design Tool Version 1.1	
EQUIVA Level Level 2 Level 1 Sum	LENT STATIC Height hi(m) 7.6 3.6	METHOD T Weight wi(kN) 1600 4437 6037	0 NZS 1170.5 wi*hi 12160 15973 28133	5 Cl 6.2.1.3 Lat Force Fi(kN) 2232 2440 4672	
				KOLL	
			. ?		
			HICIO		
			<u></u>		
	, uno				
S	20				
60					

Job Title: WEGC Science Block DSA Job Number: 5-PA010.37 Calcs By: MJG

Member Reference: Date: 4/09/2015 11:12:07 a.m.

morn

2

ation

Report created using Seismic Shear forces to NZS1170.5 Design Tool Version 1.1

HORIZONTAL SEISMIC SHEAR (V) TO NZS 1170.5

Input Data

Period (T) = 0.2 sec Site Classification A/B Equivalent Static Method Hazard Factor (Z) (See Table 3.3) = 0.4 Importance level of 3 Design Working Life of 50 Years ULS Ductility (mu) = 2 SLS1 Ductility (mu) = 1.0 ULS Structural Performance Factor (Sp) = 0.7 SLS Structural Performance Factor (Sp) = 0.7 Seismic Weight (Wt) = 6037 kN

ULS Results

ULS Return Period of 1/1000 Spectral Shape Factor Ch(T) = 1.890Return period factor from table 3.5 (Ru) = 1.30 Near Fault Factor N(T,D) = 1.000 Elastic Site Spectrum C(T) = 0.9828 Ductility Factor k(mu) = 1.571 Design Action Coefficient Cd(T) = 0.438 Horizontal Seismic Shear = **2643** kN

SLS1 Results

Return Period of 1/25Return period factor (Rs) = 0.25 Elastic Site Spectrum C(T) = 0.1890 Ductility Factor k(mu) = 1.000 Design Action Coefficient Cd(T) = 0.132 Horizontal Seismic Shear = **799** kN

Dro	inat	Tool	/Eila	Mar	
Pro	ect/	lask,	rile	NO:	

Project Description:

		(ansverse wails	
use tribu	tary areas based on th	e extent of the two storey ar	eq.
Refer sh	eet 11.		NO
Total area	= 39,4 × 14.4 - 2 (8,6	× 1.8 + 3.82) = 507.5 m2	
Gridline	Tributary area (m2)	% of Load	
Ī	5×8.8 = 44	8.6	
2	6.6×14.4 = 95	18.6	
3	6.5×14.4= 93	18:2	
4	8.1×14.4= 116	22.7	
5	8.2×14.4 = 118	23.1	
6	5×8.8 = 44	8.6	
	× 510 m2	99.8 %	
	C.		
	0		
	2.		
e			
C C C C C C C C C C C C C C C C C C C			

Project Description:

Sheet No 12 of Office: Computed: 1 1

Check:

1 1

Sheet No 13		of
Office:		
Computed:	1	1
Check:	1	/
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Sheet No (3 Office: Computed: Check:	Sheet No [3 Office: Computed: / Check: /

$V_5 = 0.8 \frac{A_v F_y}{b_w S} = 0.8 \times \frac{201 \times 325}{190 \times 400} = 0.69 MPa$	
Take Vp = 0	298t
$V_n = V_m + V_p + V_s = 0.74 + 0 + 0.69 = 1.43 MPa$	Č
$\phi = 0.8S (NZSEE)$	
ΦV_ = ΦV_ × bw × 0.8Lw = 0.85× 1.43× 190 × 0.8×6800 = 1256 kN	
Walls 2 and 3 take 18.6 % of overall demand each	
V* = 0.186×4672 = 869 kN	
$^{\circ/_{\circ}}$ NBS walls 2 and 3 = $\frac{1256}{869}$ = 144 $^{\circ/_{\circ}}$	
Transverse Internal Hall Candline 4	
No window or door openings.	
$L_{z} = 7.8m$	
DIZE 400 horizontal DIG @ 400 vertical	
$V_{n} = 1.43 M Pa$	
$\phi v_n = \phi v_n b_w 0.8 L_w = 1663 k_N$	
22.7°6 of demand on Gridline 4	
V* = 0.227 × 4672 = 106(kN	
$\% NBS Wall 4 = \frac{1663}{1061} = 156\%$	OPUS

Project/Task/File No:	Sheet No 14 of
Project Description:	Office:
	Computed: / /
	Check: / /

6

C

Project/Task/File No:	Sheet No	16	of	
Project Description:	Office:			
	Computed:	1		1
	Check:	1		1

Load is resisted by walls on gridlines A, B and D primarily. Wall on grid D has little or no tie to the first floor slab \Rightarrow attracts little load. Typore contribution of gridline D. Distribute load onto A and B by tribulary area $1 = \frac{1}{60^{\circ}/s}$ $1 = \frac{1}{60^{\circ}/s}$ 1 =					C
Lall on grid D has little or no the to the first floor stab \Rightarrow attracts little load. Ignore contribution of gridline D. Distribute load onto A and B by tributory area $60^{-1/5}$	Load is resiste	I by walls on gridline	s A, B and D	primarily,	2
⇒ attracts little load. Ignore contribution of gridline D. Pistribute load onto A and 8 by tributory area 100^{-10}	Wall on grid D	has little or no tie	to the first fl	oor slab	N
Ignore contribution of gridline D. Pistribute load onto A and S by tributogeneon $4 + 4 + 30^{2} + 5^{2} + 6^{2} + $	⇒ attracts li	tle load.		, Ĉ	
Pistribute load on to A and S by tributary area God/s	Ignore contributio	in of gridline D.		N.	
$\frac{4}{14} = \frac{30^{2}}{30^{2}} = \frac{30}{14} = \frac{60}{14}$ $\frac{4}{14} = \frac{30^{2}}{14} = \frac{30}{14} = \frac{60}{14}$ $\frac{4}{14} = \frac{30^{2}}{14} = \frac{30}{14} = \frac{6}{14}$ $\frac{4}{14} = \frac{30^{2}}{14} = \frac{30}{14} = \frac{6}{14}$ $\frac{4}{14} = \frac{30}{14} = \frac{30}{14} = \frac{25}{14}$ $\frac{1}{14} = \frac{15}{14} = \frac{75}{14}$	Distribute load of	to A and R bu	film for and a	× O	
$\frac{4.4}{14} = 30^{\circ}6 \text{on GL} \text{ A}$ $\frac{4.4}{14} = 30^{\circ}6 \text{of 8.8} \text{ A}$ $\frac{6}{14} = 35^{\circ}6 \text{on GL} \text{ A}$ $\frac{6}{14} = 35^{\circ}6 \text{on GL} \text{ A}$ $\frac{6}{14} = 35^{\circ}6 \text{on GL} \text{ A}$		the reader of the second	mouray areas	<u>0</u>	
$\frac{4.4}{14} = 30^{\circ} \frac{1}{0} = \frac{1}$			0	t	
$\frac{4.4}{14} = 30^{2} \frac{60^{2}}{14} - \frac{8.8}{14}$ $\frac{4.4}{14} = 30^{2} \frac{60^{2}}{14} - \frac{6}{14} - \frac{6}{14}$ $\frac{4.4}{14} = 30^{2} \frac{6}{14} - \frac{6}{14} - \frac{6}{14}$ $\frac{4.4}{14} = 30^{2} \frac{6}{14} - \frac{6}{14} - \frac{6}{14}$ $\frac{6}{14} = \frac{6}{14} \frac{1}{14} = \frac{1}{14} \frac{1}{14} = $		FEE		5.2m	
$\frac{44}{14} = 30\% \text{ on GLA}$ $\frac{44}{14} = 30\% \text{ on GLA}$ $\frac{44}{14} = 30\% \text{ on GLA}$ $\frac{1}{14} = 70\% \text{ on GLB}$ Gridline B (shear walls) stiffness > Gridline A (frame) stiffness Assume Gridline A takes 40\% of 8.8m $\% \text{ load GL A} = \frac{0.4\times8.8}{14} = 25\%$ $\frac{1}{14}$ $\frac{1}{14} = 75\%$		60°/3			
$\frac{4.4}{14} = 30^{\circ} \frac{1}{0} = 0$ $\frac{1}{14} = 0$ $\frac{1}{0} = 0$ $\frac{1}{0} = 0$ $\frac{1}{0} = 0$ $\frac{1}{14} = 15^{\circ} \frac{1}{0}$ $\frac{1}{14} = 15^{\circ} \frac{1}{0}$ $\frac{1}{14} = 75^{\circ} \frac{1}{0}$		4.40 40%		0.0 m	
$\frac{4.4}{14} = 30^{\circ} \frac{1}{6} \text{ on GLA}$ $\frac{1}{14}$ $\frac{1}{10^{\circ} \frac{1}{6} \text{ on GLB}}$ Gridline B (shear walls) stiffness > Gridline A (frame) stiffness Assume Gridline A takes 40% of 8.8 m. $\frac{1}{14}$ $\frac{1}{14}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{14}$ $\frac{1}{14}$			i - (A)	*	
14 To to on GL B Gridline B (shear walls) stiffness > Gridline A (frame) stiffness Assume Gridline A takes 40% of 8.8m % Load GL A = $0.4\times8.8 = 25\%$ 14 % Load GL B = $5.2+0.6\times8.8 = 75\%$	4.4 - 300 to 00	GL A			
Gridline B (shear walls) stiffness > Gridline A (frame) stiffness Assume Gridline A takes 40% of 8.8 m % boad GL A = $\frac{0.4 \times 8.8}{14} = 25\%$ % Load GL B = $5.2 \pm 0.6 \times 8.8 = 75\%$	14 40% 07	-GL B			
Assume Gidline A takes 40% of 8.8 m % load GL A = $\frac{0.4 \times 8.8}{14}$ = 25% % Load GL B = $5.2 \pm 0.6 \times 8.8$ = 75%	Cridline P (she		C:11: 0 0 (C) als (P) as	
Assume Gildline A takes 40% of 8.8 m % Load GL A = $\frac{0.4 \times 8.8}{14}$ = 25% % Load GL B = $5.2 \pm 0.6 \times 8.8$ = 75%	urraine B Est	stiffices .	s unalize A (f	ane) stiffness	
"/ Load GL A = $0.4x8.8 = 15$ "/" 14 14 14 16 Load GL B = $5.2+0.6\times8.8 = 75$ "/"	Assume Gridline	A takes 40% of 8.	3m		
$h \log d GLA = 0.4x8.8 = 25\%$ 14 14 16 Load GLB = $5.2+0.6x8.8 = 75%14$	0				
*/o Load GL B = 5.2+0.6×8.8 = 75°/o	"h Load GL A =	$\frac{0.4 \times 8.8}{14} = 25^{\circ}/_{\circ}$			
10 LUAA 4L 5 +5 /2	Childred Children	5.2+0.6×8.8 - 700/			
	To LUAD GL 5 -	14 - +5 /0			
				111	
C

Project/Task/File No:	Sheet No 13	7	of	
Project Description:	Office:	•••••••		
	Computed:	1		1
	Check:	1		1

0

roject Description:	Office:		01
	Computed:		
	Check:	1	1
Analyse as 6 holls.			
Pistribute load according to their stiffness.			9
Using cracked sections, the load distribution is ob	stained from	L ² ,	2
$\leq L^2 = 4 \times 7^2 + 2 \times 3.2^2 = 216.48$	~	Š.	
% Load on 7m wall = 72/216.48 = 22.6%	, 7 ₀ ;		
% Load on 3.2m wall = 3.22 / 216.48 = 4.7%			
7m walls			
Shear			
Vbm = 0.7 MPa (Nominally ductile)			
Vm = Vbm conservatively			
$A_{y} = \frac{\pi \times 12^{2}}{4} = 113 \text{ mm}^{2}$			
V= 0.8 Aufy = 018× 113×325 = 0.39 MPa		-	
5 5 190×400			
Take ve=0			
V = 0.1 + 0.39 = 1.09MPa			
$\phi V_n = \phi V_n \times b_w \times 0.8 L_w = 0.85 \times 1.09 \times 190 \times 0.8 \times 7000 =$: 986 kN		
Gridline B takes 75%			
V* = 4672 (µ=1.25) × 0.75× 0.226 = 792 kN			
% NBS 7 walls 792 = 124% NBS			
			JPU

Project/Task/File No:	Sheet No (9 of	
Project Description:	Office:	
	Computed: /	/
	Check: /	1

ć

Project/Task/File No:	Sheet No	20	of	
Project Description:	Office:	••••••••		•••••••
	Computed:	1		1
	Check:	1		/

Project/Task/File No:	Sheet No 21 of
Project Description:	Office:
	Computed: / /
	Check: / /

Project/Task/File No:	Sheet No 22 of
Project Description:	Office:
	Check: / /

Project/Task/File No:	Sheet No 23 of
Project Description:	Office:
	Computed: / /
	Check: / /

Project/Task/File No:	Sheet No 24 of
Project Description:	Office:
	Computed: / /
	Check: / /

Г

Project/Task/File No:	Sheet No 2S of
Project Description:	Office:
	Computed: / /
	Check: / /

	(un original providence original providence original providence or provi	=
NŁ:	54230, section 7.4 sets out the requirements for ductile wall de	sign.
Chs	eck Science Block walls neet these requirements.	
7.	4.4.1	
Le	ss than 3 stories vok	
7.	.4. 4. 2	
Wa	all thickness = 190mm > 140mm Vok	
i	190mm > 0.05 Ln = 0.05×3600 = 180mm Vok	
7.	.4.4.3	
Sh	nortest wall Lu = 1000 mm > Lu = 790 mm Vok	4
7.	4. S. 1 Vert RED	
DI	12 vert bas Jok	
41	00mm spacing Vok	
Mi	in. 4 vert bars per wall	
	- 1000mm walls have 3 bars XNG Har miles - All other walls have 24 bars VOK	0
.	4.5.2 Horiz Reo	
40	omn spacing Vok	
7.(4.5.4 Lap Splices in PHR	
fy	y = 300 MPa	
7	12	
60	1dy = 720 mm	

Project/Task/File No:	Sheet No 26 of
Project Description:	Office:
	Computed: / /
	Check: / /

Summary	
Walls meet the majority of detailing requirements for ductile	design.
Considered adequate for assessment purposes.	× NOS
Main issue is lap length in PHR.	DC1
Consider basic development length (6.3.7.3 NZS4230)	<i>6</i>)
Lds = 40 ds = 40×12 = 480mm < 500mm Vok.	
>> Assess as (ductile walls !!!	
Up of the Min. Morenal Constitution	ge wordt
Griethen	
Part and C	
and states	
	OPU

Project Description: WEGL Science Block DSA	Office:	
	Computed:	1 1
Section B	Check:	1 1
Section B		1
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		N ST
Note on Guadalia according	×	
The on foundation assessment:	G	•
Variations from the assumed pile configur	ation are unlikely	
, , , , , , , , , , , , , , , , , , ,	• •	
to result in the rating going below the	current rating	
of JC % NIPE	0	
of +6 % 1785.		
XO`		

Project/Task/File No:	Sheet No B1 of
Project Description:	Office:
	Computed: / /
	Check: / /

Foundations	
Longitudinal Loading - andline A	ar
Assume that the ground profile at GLA is 4m of fill un This is the worst case as the piles are up to Sm long embedment into rock.	derlain by rock. with min. Im
Assume that the rock profile is Level in the long direction is information.	n the obsence of
Axial load on piles	
PLAN T 8.8	
$1 - 4 + 4 + 4 + 4 + 8 \cdot 6 m$	
$W_2 = roof$ weight = 0.4 kPax 4.4 m = 1.8 kN/m	
W1 = floor weight = (2.9+0.3x3) kPax 4.4 = 16.7 kN/m	
Self weight of wall = 22kN/m3 × 8.6 × 0.19 = 35.9 kN/m	
Pile spacing = 3.2m	
Gravity load = 54.4 × 3.2 = 174 kN	
Worst case seismic load on pier = 55 kN tension Apply to one pile conservatively.	
N* = 174 - 55 = 119 kN	OPUS



Sheet B3 STRUCTUREPOINT - spColumn v4.81 (TM) Page 2 Licensed to: Opus International Consultants Ltd.. License ID: 60308-1035550-4-22A47-236F7 09/22/15 p:\projects\5-pa010.00 moe seismic panel agreement to assess public buildings\10 struc...\pile.col 05:43 PM General Information: File Name: p:\projects\5-pa010.00 moe seismic panel agreement to assess public buildings...\pile.col Project: WEGC Science Block Column: Pile Engineer: MJG ACI 318-11 Code: Units: Metric Run Option: Investigation Slenderness: Not considered Run Axis: X-axis Column Type: Structural Material Properties: SUPACT VOST f'c = 30 MPa fy = 325 MPa EC = 25084 MPa Es = 200000 MPa Ultimate strain = 0.003 mm/mm Beta1 = 0.85Section: ------Circular: Diameter = 500 mm Gross section area, Ag = 196350 mm² Ix = 3.06796e+009 mm⁴ rx = 125 mm  $Iy = 3.06796e + 009 mm^4$ ry = 125 mmXo = 0 mmYo = 0 mmReinforcement: ---ar Set: ASTM A615 Size Diam (mm) Area (mm²) Size Diam (mm) Area (mm²) Size Diam (mm) Area (mm²) ----to other balance below of -------------------# 3 10 71 # 13 129 # 5 16 200 # 6 19 284 # 7 22 387 # 8 25 510 9 29 # 10 # 645 32 819 # 11 36 1006 # 14 43 1452 # 18 57 2581 Confinement: Other; #4 ties with #8 bars, #4 with larger bars. phi(a) = 0.85, phi(b) = 1, phi(c) = 0.75Layout: Circular Pattern: All Sides Equal (Cover to transverse reinforcement) Total steel area: As = 4077 mm² at rho = 2.08% Minimum clear spacing = 89 mm 8 #8 Cover = 75 mm Axial Load and Corresponding Moment Capacities: Load PhiPn PhiMnx NA depth Dt depth eps_t Phi No. kN kNm mm mm ----------- -1 119.0 238.51 130 400 0.00625 1.000 130 -238.51 400 0.00625 1.000 ** End of output ***  $\phi M_n = M_n = 239 km$ 

	ject Description:		Office:		
			Computed:	/	1
			Check:	1	1
Г					
-					
	Pin ·	detail 7	8	C	21
			$\sim$	.0	O
				N	
	13 500p	4m			
-	piles on ult				
-					
		¥			
-	Rock	In	\$M_ = 239 kNn	~	
		10	0		
		dhu i ko			
	Lateral capacity in flexure	= + 1 / 4 = 60 kN			
	Late al capacity in shear	= Vp = 318 kN			
	1 3				
-	A Flot up a second	in the second se			
	sticture governs.				
	Demand on GLA (4=2)	$= 25\% \times 2643 = 6$	GIKN		
-			1 providente al 1		
-	Add demand Com additional	LIQIDIAT AAT (ACIULIO		1 6 110-	-CI GAA
	Add demand for additional	weight not included	in quinkii stat	ne mo	non
	Add demand formadditional No amplification PGA	weight not included	in quinter stat	re ous	non
	Add demand formadditional No amplification PGA	weight not included	in ganabili star	re bus	in on
	Add demand forwadditional No amplification PGA C(0) = 0.52 (Sheet B13)	weight not included	in ganabil star	i cousi	
	Add demand forwadditional No amplification - PGA C(0) = 0.52 (Sheet B13) 1st storey height = 3.6 m	Weight not included	in gandeli star	+C 005	
	Add demand forwadditional No amplification - PGA C(0) = 0.52 (Sheet B13) 1st storey height = 3.6 m	Weight not included	in ganabili star	, C. 043	
	Add demand forwadditional No amplification PGA C(0) = 0.52 (Sheet B13) 1st storey height = 3.6 m	N/ms x 3.6 x 39.4 x0	2 = 212 bol	, <u>,</u> , , , , , , , , , , , , , , , , ,	
	Add demand forwadditional No amplification - PGA C(0) = 0.52 (Sheet B13) 1st storey height = 3.6 m Extra weight (GLA) = 22k	weight not included $x / ms \times \frac{3.6}{2} \times 39.4 \times 0$	12 = 312 kN	, <u>,</u> , , , , , , , , , , , , , , , , ,	
2	Add demand forwadditional No amplification - PGA C(0) = 0.52 (Sheet B13) 1st storey height = 3.6 m Detra weight (GLA) = 22k 0.52×312 = 162 kN	$N/ms \times \frac{3.6}{2} \times 39.4 \times 0$	12 = 312 kN	- C - Cut3	
2	Add demand forwadditional No amplification - PGA C(0) = 0.52 (Sheet B13) 1st storey height = 3.6 m Extra weight (GLA) = 22k 0.52×312 = 162 km	$E = \frac{3.6}{2} \times 39.4 \times 0$	12 = 312 kN	, <u>,</u> , , , , , , , , , , , , , , , , ,	
	Add demand forwadditional No amplification - PGA C(0) = 0.52 (Sheet B13) 1st starey height = 3.6 m Extra weight (GLA) = 22k 0.52×312 = 162kN Total demand = 661+362 =	$\frac{\text{Weight not included}}{2}$ = 823 kN	12 = 312 kN	- C - Cut3	, in the second s

 $M^* = 63 \times 4 = 252 \, \text{kNm}$ 

 $^{\circ}/_{\circ}$  NBS piles gridline A =  $\frac{239}{252}$  = 94 %

OPUS

Project/Task/File No:	Sheet No B	5	of
Project Description:	Office:		
	Computed:	1	1
	Check:	1	1

Check degradation of shear strength in PHR	
Fig 77(b) NZSEE 2006	al
Take k= 0.10 conservatively	NOOT
$V_p = \frac{0.1}{0.2q} \times 318 = 1.0 \text{ kN} > V^* = 63 \text{ kN} \sqrt{0} \text{ k}$	Ġ
Longitudinal Loading - Gridline B	
The rock is shallower under GLB than GLA.	
Assume 13 piles. Assume level rock profile.	
If governed by flexure, >100% NBS.	
Could be shear governed.	
ON INTERNET	
$V^* = 75^{\circ} /_{0} \times 4672 = 269 \text{ kN} \text{ pe pile}$	
$V_{p} = 318  \text{kN}$	
% NBS piles gridline B > 100 %	
<u>se</u>	
No co	
20	
	OPUS

Project/Task/File No:	Sheet No BG of
Project Description:	Office:
	Computed: / /
	Check: / /



Project/Task/File No:	Sheet No B7 of
Project Description:	Office:
	Computed: / /
	Check: / /



Project/Task/File No:	Sheet No B8 of
Project Description:	Office:
	Computed: / /
	Check: / /



Project/Task/File No:	Sheet No 69	of
Project Description:	Office:	
	Computed: /	1
	Check: /	1

Grav load piles & and C = weight of transverse wall
= 22kN/m3 × 7.6×3×0.2 = 75kN
Grav load piles A and D = Wt of transverse + wt. from longitudinal
= 75/2 + 174 (Sheet 82)
= 212 kN
Seismic axial load
refer sheet BG
$T = C = \frac{3364}{9} = 374 \text{ kN}$
Resisted by 3 piles.
$T = c \frac{374}{3} = 125 \text{ kN}$
Net axial load
Pile A: $212 + 125 = 337 \text{ kN}$ Pile B: $756 \text{ km}$
Pile C 75 kN
Pile D: 212-125 = 87kN
OPUS

Sheet BID STRUCTUREPOINT - spColumn v4.81 (TM) Page 2 Licensed to: Opus International Consultants Ltd., License ID: 60308-1035550-4-22A47-236F7 09/23/15 p:\projects\5-pa010.00 moe seismic panel agreement to assess public buildings\10 struc...\pile.col 09:22 AM General Information: -----File Name: p:\projects\5-pa010.00 moe seismic panel agreement to assess public buildings...\pile.col Project: WEGC Science Block Column: Pile Engineer: MJG ACI 318-11 Code: Units: Metric Run Option: Investigation Slenderness: Not considered Run Axis: X-axis Column Type: Structural Material Properties: on Act 1982 f'c = 30 MPafy = 325 MPa Ec = 25084 MPa Es = 200000 MPa Ultimate strain = 0.003 mm/mm Beta1 = 0.85Section: _____ Circular: Diameter = 500 mm Gross section area, Ag = 196350 mm² Ix = 3.06796e+009 mm⁴  $Iy = 3.06796e + 009 \text{ mm}^4$ rx = 125 mmry = 125 mm Xo = 0 mmYo = 0 mmReinforcement: -tu ---------Set: ASTM A615 Size Diam (mm) Area (mm²) Size Diam (mm) Area (mm²) Size Diam (mm) Area (mm²) ------------------# 3 10 71 # 13 16 4 129 # 5 200 # 6 19 284 # 7 22 387 # 8 25 510 9 29 # 10 645 # 32 819 # 11 36 1006 # 14 43 1452 # 18 57 2581 Confinement: Other; #4 ties with #8 bars, #4 with larger bars. phi(a) = 0.85, phi(b) = 1, phi(c) = 0.75Lavout: Circular Pattern: All Sides Equal (Cover to transverse reinforcement) Total steel area: As = 4077 mm² at rho = 2.08% Minimum clear spacing = 89 mm 8 #8 Cover = 75 mm Axial Load and Corresponding Moment Capacities: Load PhiPn PhiMnx NA depth Dt depth eps t Phi No. kN kNm mm mm --------------1 232.73 75.0 127 400 0.00643 1.000 -232.73 127 400 0.00643 1.000 87.0 2 234.31 128 400 0.00638 1.000 -234.31 128 400 0.00638 1.000 3 337.0 400 0.00543 1.000 266.40 142 -266.40 142 400 0.00543 1.000 Release *** End of output ***

Project/Task/File No:	Sheet No 811	of
Project Description:	Office:	
	Computed:	1 1
	Check:	1 1



## Project/Task/File No:

Project Description:

.....

t

Sheet No B (2 of Office: Computed: / / Check: / /

	16 dy = 16 x 24 = 384 mm > 150 mm Vok	
	$\gg \mu$ can be taken as $> 2$ but less than 6 as $\frac{1}{4} = 93 \text{ mm} \Rightarrow$	(Somm
	set $\mu = 3$	
	Pro rata demand: 611 × 1.571 2.143 = 448 kN	
	(apacity = (4+9+29) ×3+233 = 359 kN	
	% NBS piles transverse = 359 = -80% NBS Add demand from retainin	g wall
	Additional demand = 70 kN elastic (sheet B19)	
	Total demand = $70 \times \frac{0.7}{2.143} + 448 = 0.471 \text{ kN}$	
	% NBS piles transverse = $\frac{359}{471}$ = 76 % NBS	
.0	<i>2</i> ²	
0		

Project/Task/File No:	Sheet No B	13	of
Project Description:	Office:		
	Computed:	1	1
	Check:	1	1



 Project/Task/File No:
 Sheet No
 \$14
 of

 Project Description:
 Office:

 Computed:
 /
 /

 Check:
 /
 /

	PVn wall = 1256 kN (sheet 17)
	OVA diaphragm connection = 1924 KN VOK
	Connection to Longitudinal Walls
-	
	Connection detail is given by sections J-J and L-L an sheet 204.
	D12 at 400 centres (Line A)
	DIZ at 200 centres (Line B) (400 centres each side of wall)
	Wall Line A
	$A_{Vf} = \frac{\pi \times 12^2}{4} \times \frac{39400}{400} = 11 140 \text{ mm}^2$
	ψV ₁ = 3 068 kN
	V* = 30°6 × 4672 = 1402 kN << ØVn VOK
	Wall Line B dispheran connection DK by inspection.
	supply contectors in spectrock
	Roof Diaphragm
	connection detail not known, however ceiling is within the height of
	the bond beams.
20	If diaphragm connection is inadequate, load can be transferred indirectly
	to in-plane walls by bond beam acting out of plane.
	OPUS



Retaining Walls

Project/Task/File No:	5-PA010.37	Sheet No BIG of	
Project Description:	WEGC Science Block DSA	Office:	
		Computed: MJG /14/09	12015
		Check: /	1

Retaining Wall (Slockwork)	
External wall along Gridline D of Science Block, between Gr	idlings 5 8 6
is retaining soil.	N
Check for seismic actions.	C.
2.2 m blockwork on oilm concrete upstond.	
site visit confirmed that wall is retaining ~2.3 of soil.	
Flexural Strength	
Self weight = 22kN/m3 × 2.3 × 0.19 = 9.6kN/m	
Refer section G-G, Sheet 203	
Reo is D20 at 400 centres, Somm cover.	
2.5 bars per metre	
φ=1	
\$M_= M_= 31kNm/m (Sheet C2)	
Check development length	
Actual Lab = 800 mm	
Required Ldb = 40db = 800mm JOK	
Analysis	
Wall has a good sized footing that is tied into the floor slab.	
Expected failure mechanism is wall flexure.	
Assume y = 18kN/m3	
Ø = 30°	OPU

C

(

Project/Task/File No:	Sheet No Br	7	of
Project Description:	Office:		
	Computed:	1	1
	Check:	1	/

	No surcharge in seismic case.
	REFERENCE
Rs	eference has been made to Opus "T-CEP 702 Retaining Wall Design Notes"
G	
4	spinic loads are derived from mestito.s and weth shake Manual Edition
Ĩ	
1	Loads
1	IL3
F	ζυ = 1.3
	Soil class B
G	(0) = 1.00
7	= 0.4
N	$(\tau, 0) = 1$
0	$(0) = C_n(0) Z R_n N(T, p) = 0.52$
	Anglusis
T	
F	inalyse as a migid wall since wall is restrained at top by bldg roof.
01	
	the carriquate pressure is given by
	$\Delta P_{\mathcal{E}} = \langle (0)  \gamma  H^2$
0	
1	pplica at approximately 0.0 M above the base.
Fo	* slope stability of vertical slopes the critical curved failure surface gives
	sult very similar to the critical planar failure surface.
re	

## ALL ATION ALLER

	Sheet No 5	51% 01	f
Project Description:	Office:		
	Computed:	1	1
	Check:	1	1
Assure the land of Cicking Constant and			
assume will ingle of pretton, 0 - 0 - 50-			
Hall angle, at = 0° (vertical)			9
J /			6
Backfill angle, i = 0° (Flat)		20	
	C C		
$k_{\perp} = \frac{\cos^2(\phi - \alpha)}{\cos^2(\phi - \alpha)}$			
$\Gamma$ $\left[ sig(\phi + \delta) sig(\phi - i) \right]$	-72		
$\cos^2 d \cos(\alpha + \beta) + \sqrt{\cos(\alpha + \beta)\cos(i - \alpha)}$	.0		
	1		
	0		
$K_{\rm A} = 0.297$			
$P_{0} = \frac{1}{2} K_{0} \times H^{2} = \frac{1}{2} \times 0.297 \times (8 \times 2.2^{2}) = 14 \text{ Text /or}$			
n 1 - A U			
DPE = (0) y H2 = 0.52 × 18 × 2 32 = 49.5 kN/m			
2.3 f - PA 0.6 × 2.3			
3 + 1 777 +			
M* = 2:3 × 14.1 + 0.6 × 2.3× 49.5 = 79.1kNm/m as a	cantilever		
MAR SLOPINM /m			
However the wall is restrained by transverse walls a	nd by conf		
	-]		
Consider the wall as a propped confilever.			
Shift elatt			
N= 16 Heating (change) (change)			
and a sitter and a site and a site of the			
NY 42 111 12 57 1 3 4 15 7 1			

OPUS

water as a fly a

C

Project/Task/File No:	Sheet No BI9 of
Project Description:	Office:
	Computed: / /
	Check: / /



 Project/Task/File No:
 Sheet No
 § 2.0
 of

 Project Description:
 Office:

 Computed:
 /
 /

 Check:
 /
 /

Concrete Retaining Wall Up to 2.3 m high beside building. Joins to blockwork wall. Flexural Strength reo is \$20 at 400 centres, somm cover. Assume fic = 30 MPa Self weight = 24kN/m3 x 2.3 x 0.19 = 10.5kN/m Check development length Actual Ldb = 700mm Required Lab = 0.5da fy db = 0.5x 1x325 x20 = S93mm VOK \$=1 ØMA = MA = 33 kNm/m (sheet C4) Analysis C(0) = 0.52Wall Scantilevering - 'flexible' wall = Analyse by Coulomb sliding wedge theory. FE studies and tests have shown that the increment of EQ force acts at approx 0.33H above the base of the wall. (opus Ret Wall Manual) (Same location as static pressure) Horizontal accel, kh = c(0) = 0.52 vet accel, by taken as 0.  $\partial = \tan^{-1}\left(\frac{kn}{1-kn}\right) = 27.5^{\circ} = 0.48 \, rad$ **OPUS** 

Project/Task/File No:	Sheet No B21 of
Project Description:	Office:
	Computed: / /
	Check: / /



#### WELCOME TO CONPROP(V 1.8) ** AN EXCEL SPREADSHEET FOR ANALYSING CONCRETE SECTIONS FOR FLEXURE UNDER UNCRACKED, CRACKED AND ULTIMATE CONDITIONS, IN ACCORDANCE WITH NZS 3101.



FEP 1 De				Project:	WEGC Science B	llock
FEP 1 De				Computed:	M Geddes	
(1156	scribe the Ur	cracked Section			Date:	Time:
(use	consistent ur	its e.g. N and mm			17-Sep-15	16:03
thro	ugh out the sp	readsheet)				
Total	Section depth	(d) =			190	T .
Web	width (w) =				1000	N N
Top f	lange width ex	cluding web (b1) =			0	<
Top f	lange thicknes	s (t) =			0	THESE
Botto	m flange width	excluding web (b2	2) =		o	6 values
Botto	m flange thick	ness (b) =			0	may
Axial	compressive l	oad (P) and,			9,600	he
Depth	from top surf	ace of this load (di)			95	zero
Assur	ned tensile cra	acking stress (f't)			0	
Steel	Elastic Moduli	us (Es)			200.000	
FP 2 De	scriba staal s	izes and locations				
CP 2 Des	scribe steel s	izes and locations				
desci	ribe location of	the centroid of up t	to 10 bar bu	ndles from e	ither the top or the	
botto	m surface. D	escribe Location of	each bundle	e from only o	ne surface.	
	1.1.1. P					
<u> </u>	Addular ratio	(n=Es*(1+Ct)/E	c) =	11		
	TOP BARS		1	3	BOTTOM BA	ARS
No.	Bar	Distance	1	No of	Bar	Distance
Bars	Diam	From Top		Bars	Diam	From Bottom
		Surface				Surface
3	20.00	60.00		0	0.00	0.00
0	0.00	0.00		0	0.00	0.00
0	0.00	0.00		0	0.00	0.00
0	0.00	0.00		0	0.00	0.00
0	0.00	0.00	1	0	0.00	0.00
0	0.00	0.00	1	0	0.00	0.00
	0.00	0.00	1	0	0.00	0.00
0	0.00	0.00	1	0	0.00	0.00
	0.00	0.00	1	0	0.00	0.00
0	0.00	0.00		0	0.00	0.00
0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00		0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00	

	0.003	
Ratio of (stress block)/(N.A.) depths	0.85	
Axial compressive load (P) and	9 600	
depth from top surface of this load (di)		
Crack root tensile stress (say 0.5ft)		
Concrete Flastic Modulus (Ec)	0.0	
	18,401	
Concrete compressive strength (f'c)	12	1.5
Steel Elastic Modulus (Es)	200,000	
Steel Yield Stress (Fy)	325	
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Analysis results shown below correspond to the conditions that	t exist	$\sim 0^{\circ}$
when the peak compression strain equals (e) given above. A	rectangular	
stress block with average stress=0.85f'c is assumed.		
	. •	$\mathbf{O}$
FOR ULTIMATE MOMENT SECTION ANALYSIS:	×	
(a) CRACK PROPAGATING FROM BOTTOM	.0	
Depth to N.A.(zero stress) from top (c)	3.05E+01	
Steel Stress (Maximum Tension)	3 25E+02	
Crack Depth	1.50E+02	
Total Tension Force (including P)		D
Total Compression Force, including P)	2.65E+05	Ratio I/C =
Nominal Flav stars att (Ma)	2.65E+05	1.000
Nominal Flex strength (Min)SEE NOTE 2	1.28E+07	(=1.0 for iteratio
Section Curvature (from curv = e/c )	9.82E-05	convergence
(b) CRACK PROPAGATING FROM TOP		
Depth to N.A.(zero stress) from bottom (c)	. 3.05E+01	
Steel Stress (Maximum Tension)	3 25E+02	
Crack Depth	1.59E+02	
Total Tension Force (including P)	2 655+05	Datia T/C -
Tatal Companying Francisco India	2.050-05	
LOIAL LOMDRESSION FORCE JACK COMPLETED	2.00E+05	1.000
Nominal Flax strength (Mp) SEE NOTE 2		I (=1.0 for iteratio)
Nominal Flex strength (Mn)SEE NOTE 2	. 3.07E+07	(
Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	. 9.82E-05	convergence)
Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	9.82E-05	convergence)

### WELCOME TO CONPROP(V 1.8) ** AN EXCEL SPREADSHEET FOR ANALYSING CONCRETE SECTIONS FOR FLEXURE UNDER UNCRACKED, CRACKED AND ULTIMATE CONDITIONS, IN ACCORDANCE WITH NZS 3101.



				WEGC Science	Slock
			Computed:	M Geddes	
TEP 1	Describe the	Uncracked Section		Date:	Time:
	(use consistent	units e.g. N and mm		17-Sep-15	16:03
	through out the	spreadsheet)			
Г	Total Section der	oth (d) =		190	
	Web width (w) =	(1)		1000	N N
	Top flange width	excluding web (b1) =		0	<
	Top flange thickn	ess (t) =		0	THESE
	Bottom flange wid	dth excluding web (b2) = .			6 values
	Bottom flange thi	ckness (b) =		0	may
	Axial compressive	e load (P) and,		10.500	he
	Depth from top su	urface of this load (di)		95	zero
	Assumed tensile	cracking stress (f't)	Contraction of the second s		
	the second se			0	<
ت P 2	Steel Elastic Mod Describe stee describe location bottom surface.	I sizes and locations of the centroid of up to 10 Describe Location of each	bar bundles from e bundle from only o	either the top or the	<
EP 2	Steel Elastic Mod Describe stee describe location bottom surface. Modular ratio	I sizes and locations of the centroid of up to 10 Describe Location of each (n=Es*(1+Ct)/Ec) =	bar bundles from en bundle from only o	0 200,000	2
EP 2	Steel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BARS Bar	I sizes and locations of the centroid of up to 10 Describe Location of each (n=Es*(1+Ct)/Ec) =	bar bundles from en bundle from only o	either the top or the one surface.	ARS
EP 2	Steel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BARS Bar Diam	I sizes and locations of the centroid of up to 10 Describe Location of each (n=Es*(1+Ct)/Ec) =	bar bundles from en bundle from only o	0 200,000 either the top or the one surface. BOTTOM B, Bar Diam	ARS Distance
EP 2	Steel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BARS Bar Diam	I sizes and locations         of the centroid of up to 10         Describe Location of each         0       (n=Es*(1+Ct)/Ec) =         0       Distance         From Top                 Surface	bar bundles from en bundle from only o 8 No of Bars	0 200,000 either the top or the one surface. BOTTOM B, Bar Diam	ARS Distance From Bottom
P 2	Steel Elastic Mod Describe stee describe location bottom surface. <u>Modular ratio</u> <u>TOP BARS</u> Bar Diam 20.00	I sizes and locations         of the centroid of up to 10         Describe Location of each         0       (n=Es*(1+Ct)/Ec) =         0       Distance         From Top                 Surface                 60.00	bar bundles from en bundle from only o	0 200,000 either the top or the one surface. BOTTOM B. Bar Diam	ARS Distance From Bottom Surface
EP 2	Steel Elastic Mod Describe stee describe location bottom surface. <u>Modular ratio</u> <u>TOP BARS</u> Bar Diam 20.00 0.00	I sizes and locations         of the centroid of up to 10         Describe Location of each         0         (n=Es*(1+Ct)/Ec) =         S         I Distance         From Top         Surface         60.00         0.00	bar bundles from en bundle from only on the second	0 200,000 either the top or the one surface. BOTTOM B, Bar Diam 0.00 0.00	ARS Distance From Bottom Surface 0.00
iP 2	Steel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BARS Bar Diam 20.00 0.00 0.00	I sizes and locations         of the centroid of up to 10         Describe Location of each         0         (n=Es*(1+Ct)/Ec) =         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0          0          0<	bar bundles from en bundle from only o	either the top or the bine surface. BOTTOM B. Bar Diam 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00
P 2	Steel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BARS Bar Diam 20.00 0.00 0.00 0.00 0.00	I sizes and locations         of the centroid of up to 10         Describe Location of each         0       (n=Es*(1+Ct)/Ec) =         0       Distance         From Top         Surface         60.00         0.00         0.00         0.00	bar bundles from en bundle from only o    No of Bars	0 200,000 either the top or the one surface. BOTTOM B, Bar Diam 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00
• • • • • • • • • • • • • • • • • • •	Steel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BARS Bar Diam 20.00 0.00 0.00 0.00 0.00 0.00	I sizes and locations         of the centroid of up to 10         Describe Location of each         D         (n=Es*(1+Ct)/Ec) =         Distance         From Top         Surface         60.00         0.00         0.00         0.00         0.00         0.00	bar bundles from end bundle from only on 8 No of Bars 0 0 0 0 0 0 0	0 200,000 either the top or the one surface. BOTTOM B, Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00
C. ars	Steel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BARS Bar Diam 20.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	I sizes and locations         of the centroid of up to 10         Describe Location of each         D         (n=Es*(1+Ct)/Ec) =         S         Distance         From Top         Surface         60.00         0.00         0.00         0.00         0.00         0.00	bar bundles from en bundle from only on the second	0 200,000 either the top or the one surface. BOTTOM B. Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00
<b>P 2</b>	Steel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BARS Bar Diam 20.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	I sizes and locations         of the centroid of up to 10         Describe Location of each         0       (n=Es*(1+Ct)/Ec) =         0       0.00         0.00       0.00         0.00       0.00         0.00       0.00         0.00       0.00	bar bundles from en bundle from only on the second	0 200,000 either the top or the one surface. Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
P 2	Steel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BARS Bar Diam 20.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	I sizes and locations         of the centroid of up to 10         Describe Location of each         0       (n=Es*(1+Ct)/Ec) =         0       0.00         0.00       0.00         0.00       0.00         0.00       0.00         0.00       0.00         0.00       0.00         0.00       0.00	bar bundles from en bundle from only o 8 No of Bars 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 200,000 either the top or the one surface. BOTTOM B. Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
EP 2	Steel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BARS Bar Diam 20.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	I sizes and locations         of the centroid of up to 10         Describe Location of each         0       (n=Es*(1+Ct)/Ec) =         0       0.00         0.00       0.00         0.00       0.00         0.00       0.00         0.00       0.00         0.00       0.00         0.00       0.00	bar bundles from end bundle from only on 8 No of Bars 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 200,000 either the top or the one surface. BOTTOM B, Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

	0.002	
Ratio of (stress block)/(N A) depths	0.003	
Avial compressive load (P) and	0.85	
denth from ton surface of this load (di)	10,500	
Crock root topsile stress (see 0.5%)	95	
Crack root tensile stress (say 0.5rt)	0.0	
Concrete Elastic Modulus (Ec)	25,084	
Concrete compressive strength (f'c)	30	2.1.
Steel Elastic Modulus (Es)	200,000	
Steel Yield Stress (Fy)	325	
Analysis results shown below correspond to the conditions the	at exist	
when the peak compression strain equals (e) given above.	A rectangular	
stress block with average stress=0.85f'c is assumed.	5	
FOR III TIMATE MOMENT SECTION ANALYSIS.		
FOR ULTIMATE MOMENT SECTION ANALYSIS:		
a) CRACK PROPAGATING FROM BOTTOM		
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c)	1.23E+01	1
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension)	1.23E+01 3.25E+02	
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth	1,23E+01 3.25E+02 1,78E+02	
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P)	1,23E+01 3.25E+02 1,78E+02 2.66E+05	Ratio T/C =
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel	1.23E+01 3.25E+02 1.78E+02 2.66E+05 2.66E+05	Ratio T/C =
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2	1,23E+01 3.25E+02 1.78E+02 2.66E+05 2.66E+05 1,49E+07	Ratio T/C = 1.000
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c)	1.23E+01 3.25E+02 1.78E+02 2.66E+05 2.66E+05 2.66E+05 1.49E+07 2.45E-04	Ratio T/C = 1.000 (=1.0 for iteratio
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	1.23E+01           3.25E+02           1.78E+02           2.66E+05           2.66E+05           1.49E+07           2.45E-04	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	1.23E+01           3.25E+02           1.78E+02           2.66E+05           2.66E+05           1.49E+07           2.45E-04	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A. (zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c)	1,23E+01 3.25E+02 1.78E+02 2.66E+05 2.66E+05 1.49E+07 2.45E-04	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP Depth to N.A (zero stress) from bottom (c)	1.23E+01           3.25E+02           1.78E+02           2.66E+05           2.66E+05           1.49E+07           2.45E-04	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension)	1.23E+01 3.25E+02 1.78E+02 2.66E+05 2.66E+05 1.49E+07 2.45E-04	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension)	1.23E+01           3.25E+02           1.78E+02           2.66E+05           2.66E+05           1.49E+07           2.45E-04	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth	1.23E+01 3.25E+02 1.78E+02 2.66E+05 2.66E+05 2.45E+05 2.45E-04 1.23E+01 3.25E+02 1.78E+02	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P)	1.23E+01 3.25E+02 1.78E+02 2.66E+05 2.66E+05 2.45E+05 2.45E-04 1.23E+01 3.25E+02 1.78E+02 1.78E+02 2.66E+05	Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C =
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Tension Force (including P) Total Compression Force -incl. comp steel	1.23E+01 3.25E+02 1.78E+02 2.66E+05 2.66E+05 2.45E+05 1.49E+07 2.45E-04 2.45E-04 1.23E+01 3.25E+02 1.78E+02 2.66E+05 2.66E+05	Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C = 1.000
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2	1.23E+01 3.25E+02 1.78E+02 2.66E+05 2.66E+05 2.66E+05 1.49E+07 2.45E-04 2.45E-04 3.25E+02 1.78E+02 2.66E+05 2.66E+05 3.28E+07	Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C = 1.000 (=1.0 for iteratio
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A. (zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP Depth to N.A. (zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	1.23E+01           3.25E+02           1.78E+02           2.66E+05           2.66E+05           1.49E+07           2.45E-04	Ratio T/C = 1.000 (=1.0 for iteration convergence) Ratio T/C = 1.000 (=1.0 for iteration convergence)
a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)         Steel Stress (Maximum Tension)         Crack Depth         Total Tension Force (including P)         Total Compression Force -incl. comp steel.         Nominal Flex strength (Mn)SEE NOTE 2         Section Curvature (from curv = e/c )         b) CRACK PROPAGATING FROM TOP         Depth to N.A.(zero stress) from bottom (c)         Steel Stress (Maximum Tension)         Crack Depth         Total Tension Force (including P)         Total Tension Force (including P)         Steel Stress (Maximum Tension)         Crack Depth         Total Tension Force (including P)         Total Compression Force -incl. comp steel.         Nominal Flex strength (Mn)SEE NOTE 2         Section Curvature (from curv = e/c )	1.23E+01           3.25E+02           1.78E+02           2.66E+05           2.66E+05           1.49E+07           2.45E-04	Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C = 1.000 (=1.0 for iteration convergence)
## WELCOME TO CONPROP(V 1.8) ** AN EXCEL SPREADSHEET FOR ANALYSING CONCRETE SECTIONS FOR FLEXURE UNDER UNCRACKED, CRACKED AND ULTIMATE CONDITIONS, IN ACCORDANCE WITH NZS 3101.



			Fioject.	WEGC Science B	lock
			Computed:	M Geddes	
STEP 1.	Describe the U	ncracked Section		Date:	Time:
	(use consistent un through out the sp	nits e.g. N and mm preadsheet)		23-Sep-15	10:11
	Total Section depth	n (d) =		2000	1
	Web width (w) = Top flange width <b>e</b> x	ccluding web (b1) =		. 190 . 0	<
	Top flange thicknes Bottom flange widt	ss (t) = n <b>excluding</b> web (b2) =		0	THESE 6 values
	Bottom flange thick	ness (b) =		0	may
	Axial compressive	oad (P) and,		0	be
	Depth from top sur	ace of this load (di)		0	zero
	Assumed tensile cr	acking stress (f't)		0	<
STEP 2 .	Steel Elastic Modul Describe steel s describe location c bottom surface. E Modular ratio	us (Es) sizes and locations f the centroid of up to 10 Describe Location of each (n=Es*(1+Ct)/Ec) =	bar bundles from e bundle from only o	ither the top or the surface.	
STEP 2 .	Steel Elastic Modul Describe steel s describe location of bottom surface. D Modular ratio	us (Es) sizes and locations f the centroid of up to 10 Describe Location of each (n=Es*(1+Ct)/Ec) =	bar bundles from e bundle from only o	ither the top or the ne surface.	ARS
STEP 2 .	Steel Elastic Modul Describe steel s describe location o bottom surface. D Modular ratio TOP BARS Bar	us (Es) sizes and locations f the centroid of up to 10 Describe Location of each (n=Es*(1+Ct)/Ec) =	bar bundles from e bundle from only o 11 No of	200,000 hither the top or the ne surface. BOTTOM BA Bar	ARS Distance
No. Bars	Steel Elastic Modul Describe steel s describe location c bottom surface. E Modular ratio TOP BARS Bar Diam	us (Es) sizes and locations of the centroid of up to 10 bescribe Location of each (n=Es*(1+Ct)/Ec) = Distance From Top Surface	bar bundles from e bundle from only o 11 No of Bars	200,000 hither the top or the me surface. BOTTOM BA Bar Diam	ARS Distance From Bottom Surface
No. Bars	Steel Elastic Modul Describe steel s describe location c bottom surface.  D Modular ratio TOP BARS Bar Diam 16.00	us (Es) sizes and locations if the centroid of up to 10 Describe Location of each (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00	bar bundles from e bundle from only o 11 No of Bars 0	200,000 hither the top or the ne surface. BOTTOM BA Bar Diam 0.00	ARS Distance From Bottom Surface 0.00
No. Bars	Steel Elastic Modul Describe steel s describe location c bottom surface.  Modular ratio TOP BARS Bar Diam 16.00 12.00 12.00	us (Es) sizes and locations f the centroid of up to 10 bescribe Location of each (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00	bar bundles from e bundle from only o 11 No of Bars 0 0	<u>200,000</u> ither the top or the ne surface. <u>BOTTOM BA</u> Bar Diam 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00
No. Bars 1 1 1	Steel Elastic Modul Describe steel s describe location o bottom surface.  Modular ratio TOP BARS Bar Diam 16.00 12.00 12.00 12.00 12.00 12.00	us (Es) sizes and locations f the centroid of up to 10 bescribe Location of each (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00	bar bundles from e bundle from only o 11 No of Bars 0 0 0	<u>200,000</u> hither the top or the me surface. Bar Diam 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00
No. Bars 1 1 1 1	Steel Elastic Modul Describe steel s describe location c bottom surface.  D Modular ratio TOP BARS Bar Diam 16.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 1	us (Es) sizes and locations f the centroid of up to 10 bescribe Location of each (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00 1300.00 1700.00	bar bundles from e bundle from only o 11 No of Bars 0 0 0 0 0	ither the top or the ne surface. BOTTOM BA Bar Diam 0.00 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00
No. Bars 1 1 1 1 1 0	Steel Elastic Modul Describe steel s describe location c bottom surface. E Modular ratio TOP BARS Bar Diam 16.00 12.00 12.00 12.00 12.00 12.00 0.00	us (Es) sizes and locations f the centroid of up to 10 bescribe Location of each (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00 1300.00 1700.00 0.00	bar bundles from e bundle from only o 11 No of Bars 0 0 0 0 0 0 0	200,000 ither the top or the me surface. Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00
No. Bars 1 1 1 1 0 0	Steel Elastic Modul Describe steel s describe location c bottom surface.  Modular ratio TOP BARS Bar Diam 16.00 12.00 12.00 12.00 12.00 12.00 0.00 0	us (Es) sizes and locations f the centroid of up to 10 bescribe Location of each (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00 1300.00 1700.00 0.00 0.00	bar bundles from e bundle from only o 11 No of Bars 0 0 0 0 0 0 0 0 0	200,000 ither the top or the ne surface. BOTTOM BA Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
No. Bars 1 1 1 1 0 0 0	Steel Elastic Modul Describe steel s describe location o bottom surface.  Modular ratio TOP BARS Bar Diam 16.00 12.00 12.00 12.00 12.00 0.00 0.00 0.	us (Es) sizes and locations f the centroid of up to 10 bescribe Location of each (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00 1300.00 1700.00 0.00 0.00	bar bundles from e bundle from only o 11 No of Bars 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200,000 ither the top or the ine surface. BOTTOM BA Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
No. Bars 1 1 1 1 0 0 0 0	Steel Elastic Modul Describe steel s describe location c bottom surface. E Modular ratio TOP BARS Bar Diam 16.00 12.00 12.00 12.00 12.00 12.00 0.00 0	us (Es)	bar bundles from e bundle from only o 11 No of Bars 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200,000 ither the top or the ne surface. Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

2.0m Pier Gridline A

	0.003	
Ratio of (stress block)/(N A ) depths	0.005	
Avial compressive load (P) and	0.85	
Axial compressive load (P) and,		
depth from top surface of this load (di)	0	
Crack root tensile stress (say 0.5f't)	0.0	
Concrete Elastic Modulus (Ec)	18,401	
Concrete compressive strength (f'c)		
Steel Elastic Modulus (Es)	200.000	
Steel Yield Stress (Fv)	325	
<u>, , , , , , , , , , , , , , , , , , , </u>		
when the peak compression strain equals (e) given above. A stress block with average stress=0.85f'c is assumed. S FOR ULTIMATE MOMENT SECTION ANALYSIS:	rectangular	on
a) ON ON FROM AND ATTING FROM BUTTOM	1 0 105 101	1
Depth to N A (zero stress) from top (a)	3.4UCTUI	
Depth to N.A.(zero stress) from top (c)	2 255.00	
Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension)	3.25E+02	
Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth		
Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P)		Ratio T/C =
Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel		Ratio T/C = 1.000
Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2		Ratio T/C = 1.000 (=1.0 for iteratio
Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel. Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )		Ratio T/C = 1.000 (=1.0 for iteratio convergence
Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )		Ratio T/C = 1.000 (=1.0 for iteratio convergence
Depth to N.A. (zero stress) from top (c)		Ratio T/C = 1.000 (=1.0 for iteratic convergence
Depth to N.A. (zero stress) from top (c)		Ratio T/C = 1.000 (=1.0 for iteratic convergence
Depth to N.A.(zero stress) from top (c)		Ratio T/C = 1.000 (=1.0 for iteratic convergence
Depth to N.A.(zero stress) from top (c)		Ratio T/C = 1.000 (=1.0 for iteratic convergence
Depth to N.A.(zero stress) from top (c)		Ratio T/C = 1.000 (=1.0 for iteratio convergence
Depth to N.A.(zero stress) from top (c)		Ratio T/C = 1.000 (=1.0 for iteratic convergence Ratio T/C =
Depth to N.A.(zero stress) from top (c)		Ratio T/C = 1.000 (=1.0 for iteration convergence Ratio T/C = 1.000 (=1.0 for iteration
Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curve = e/c )		Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C = 1.000 (=1.0 for iteratio
Depth to N.A.(zero stress) from top (c)		Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C = 1.000 (=1.0 for iteratio convergence)
Depth to N.A. (zero stress) from top (c)		Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C = 1.000 (=1.0 for iteratio convergence)

(7

## WELCOME TO CONPROP(V 1.8) ** AN EXCEL SPREADSHEET FOR ANALYSING CONCRETE SECTIONS FOR FLEXURE UNDER UNCRACKED, CRACKED AND ULTIMATE CONDITIONS, IN ACCORDANCE WITH NZS 3101.



			Tioject	A A A A A A A A A A A A A A A A A A A	Block
			Computed	M Geddes	
STEP 1	EP 1 Describe the Uncracked Section			Date:	Time:
	(use consistent through out the	units e.g. N and mm spreadsheet)		23-Sep-15	10:11
F	Total Section der	oth (d) =		2800	7
h	Veb width $(w) =$			190	N
	op flange width	excluding web (b1) =		. 0	<
1	op flange thickn	ness (t) =		. 0	THESE
E	Bottom flange wie	dth excluding web (b2) =		. 0	6 values
E	Bottom flange thi	ckness (b) =		. 0	may
1	xial compressiv	e load (P) and,		. 0	be
I	Depth from top si	urface of this load (di)		. 0 • (	zero
/	ssumed tensile	cracking stress (ft)			
1/	Assumed tensile cracking stress (f't)				<
ر ی TEP 2	Steel Elastic Mod . Describe stee describe location pottom surface. Modular ratio	I sizes and locations n of the centroid of up to 1 Describe Location of eac o (n=Es*(1+Ct)/Ec)	0 bar bundles from e ch bundle from only c = 11	either the top or the	,
TEP 2	Steel Elastic Mod Describe stee describe location bottom surface. Modular ration TOP BARS	I sizes and locations n of the centroid of up to 1 Describe Location of eac o (n=Es*(1+Ct)/Ec)	0 bar bundles from e ch bundle from only c = 11	either the top or the one surface.	ARS
STEP 2	teel Elastic Mod <b>Describe stee</b> describe location bottom surface. <u>Modular ration</u> <u>TOP BAR</u> Bar	I sizes and locations of the centroid of up to 1 Describe Location of eac o (n=Es*(1+Ct)/Ec)	0 bar bundles from e ch bundle from only c = 11   No of	200,000 either the top or the one surface. BOTTOM B Bar	ARS Distance
TEP 2	teel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BAR Bar Diam	I sizes and locations of the centroid of up to 1 Describe Location of eac (n=Es*(1+Ct)/Ec) = S Distance From Top	0 bar bundles from e ch bundle from only c = 11 No of Bars	200,000 either the top or the one surface. BOTTOM B Bar Diam	ARS Distance From Bottom
TEP 2	Steel Elastic Mod Describe stee describe location bottom surface. Modular ration TOP BARS Bar Diam	I sizes and locations n of the centroid of up to 1 Describe Location of ead o (n=Es*(1+Ct)/Ec) S Distance From Top Surface	0 bar bundles from e ch bundle from only c = 11 No of Bars	BOTTOM B Bar Diam	ARS Distance From Bottom Surface
TEP 2 No. Bars	Steel Elastic Mod Describe stee describe location bottom surface. Modular ration TOP BARS Bar Diam 16.00	I sizes and locations of the centroid of up to 1 Describe Location of eac o (n=Es*(1+Ct)/Ec) S Distance From Top Surface 100.00	0 bar bundles from e ch bundle from only c = 11 No of Bars 0	BOTTOM B Bar Diam 0.00	ARS Distance From Bottom Surface 0.00
TEP 2 No. Bars	teel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BAR Bar Diam 16.00 12.00	I sizes and locations         n of the centroid of up to 1         Describe Location of eac         0       (n=Es*(1+Ct)/Ec)         S         Distance         From Top         Surface         100.00         500.00         0000	0 bar bundles from e ch bundle from only o = 11 No of Bars 0 0	BOTTOM B Bar Diam 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00
TEP 2 No. Bars 1 1 1 1	A constraint of the second sec	I sizes and locations of the centroid of up to 1 Describe Location of eac o (n=Es*(1+Ct)/Ec) S Distance From Top Surface 100.00 500.00 900.00	0 bar bundles from e ch bundle from only c = 11 No of Bars 0 0 0	BOTTOM B Bar Diam 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00
TEP 2 No. Bars 1 1 1 1 1	Steel Elastic Mod Describe stee describe location bottom surface. Modular ratio TOP BARS Bar Diam 16.00 12.00 12.00 12.00 12.00	I sizes and locations         n of the centroid of up to 1         Describe Location of ead         0       (n=Es*(1+Ct)/Ec)         S         Distance         From Top         Surface         100.00         500.00         900.00         1300.00	0 bar bundles from e ch bundle from only c = 11 No of Bars 0 0 0 0	BOTTOM B Bar Diam 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00
TEP 2 No. Bars 1 1 1 1 1 1 1 1	Steel Elastic Mod Describe stee describe location bottom surface. Modular ration TOP BARS Bar Diam 16.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	I sizes and locations         n of the centroid of up to 1         Describe Location of eac         0       (n=Es*(1+Ct)/Ec)         S         Distance         From Top         Surface         100.00         900.00         1300.00         1700.00         2100.00	0 bar bundles from e ch bundle from only c = 11 No of Bars 0 0 0 0 0	BOTTOM B Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TEP 2 No. Bars 1 1 1 1 1 1 1 1 1 1 1 1	A constraint of the second sec	I sizes and locations         n of the centroid of up to 1         Describe Location of eac         0       (n=Es*(1+Ct)/Ec)         S         Distance         From Top         Surface         100.00         500.00         900.00         1300.00         2100.00         2500.00	0 bar bundles from e ch bundle from only o = 11 No of Bars 0 0 0 0 0 0 0	BOTTOM B Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
TEP 2 No. Bars 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A constraint of the state of th	I sizes and locations         n of the centroid of up to 1         Describe Location of eac         0       (n=Es*(1+Ct)/Ec)         S         Distance         From Top         Surface         100.00         900.00         1300.00         1700.00         2100.00         0.00	0 bar bundles from e ch bundle from only c = 11 No of Bars 0 0 0 0 0 0 0 0 0 0	BOTTOM B Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
TEP 2 No. Bars 1 1 1 1 1 1 1 1 0 0 0	Steel Elastic Mod Describe stee describe location bottom surface. <u>Modular ration</u> <u>TOP BAR</u> Bar Diam 16.00 12.00 12.00 12.00 12.00 12.00 12.00 0.00 0.00	I sizes and locations         n of the centroid of up to 1         Describe Location of ead         0       (n=Es*(1+Ct)/Ec)         S         Distance         From Top         Surface         100.00         900.00         1300.00         1700.00         2100.00         0.00         0.00	0 bar bundles from etch bundle from only c = 11 No of Bars 0 0 0 0 0 0 0 0 0 0 0 0 0	BOTTOM B Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

2.8m Pier Gridline A

(values entered in steps 1&2 may be varied for this part of the ar	nalysis.)	-1
Concrete ultimate strain (e)	0.003	
Ratio of (stress block)/(N.A.) depths	0.85	
Axial compressive load (P) and,	0	
depth from top surface of this load (di)	0	
Crack root tensile stress (say 0.5f't)	0.0	
Concrete Elastic Modulus (Ec)	18,401	
Concrete compressive strength (f'c)	12	
Steel Elastic Modulus (Es)	200.000	
Steel Yield Stress (Ev)	200,000	
	525	
Analysis results shown helew correspond to the conditions that av	lat	
when the peak compression strain, armala (a) sizes shows that ex	ISt	
when the peak compression strain equals (e) given above. A rec	tangular	
stress block with average stress=0.85f'c is assumed.		
	*.	()
FOR ULTIMATE MOMENT SECTION ANALYSIS:	× *	
TOR DETIMATE MOMENT DEDTION ANALTOID.		
	~0	
a) URAUN PRUPAGATING FRUM BUTTUM		
Depth to N.A.(zero stress) from top (c)	1.22E+02	1
Steel Stress (Maximum Tension)	3.25E+02	
Crack Depth	2.68E+03	
Total Tension Force (including P)	2.21E+05	Ratio T/C =
Total Compression Force -incl. comp steel	2 21E+05	1 000
Nominal Elev strength (Mn)SEE NOTE 2	2 195+00	(-1.0 for iteration
Continuer riek successful (Will)SEE NOTE Z	3. TOETUS	(-1.0 for iteratio
Statement I HEADER FROM STATE STATE	2.40E-05	convergence
Section Curvature (from curv = e/c )		
Section Curvature (from curv = e/c )		
Section Curvature (from curv = e/c )		
b) CRACK PROPAGATING FROM TOP		
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c)	1.74E+02	1
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension)	1.74E+02 3.25E+02	1
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c)	1.74E+02 3.25E+02 2.63E+03	
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth	1.74E+02 3.25E+02 2.63E+03 2.86E±05	Della T/O
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P)	1.74E+02 3.25E+02 2.63E+03 2.86E+05	Ratio T/C =
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05	Ratio T/C = 1.000
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08	Ratio T/C = 1.000 (=1.0 for iteratio
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c)	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08 1.73E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c)	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08 1.73E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Fotal Tension Force (including P) Fotal Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08 1.73E-05	Ratio T/C = 1.000 (=1.0 for iteration convergence
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08 1.73E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08 1.73E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08 1.73E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08 1.73E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08 1.73E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c)	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08 1.73E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c)	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08 1.73E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c)	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08 1.73E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c)	1.74E+02 3.25E+02 2.63E+03 2.86E+05 2.86E+05 4.42E+08 1.73E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)

## WELCOME TO CONPROP(V 1.8) ** AN EXCEL SPREADSHEET FOR ANALYSING CONCRETE SECTIONS FOR FLEXURE UNDER UNCRACKED, CRACKED AND ULTIMATE CONDITIONS, IN ACCORDANCE WITH NZS 3101.



			Project:	WEGC Science B	Block
			Computed:	M Geddes	
STEP 1.	P 1 Describe the Uncracked Section			Date:	Time:
	(use consistent u through out the s	nits e.g. N and mm preadsheet)		23-Sep-15	10:11
	Total Section dept	h (d) =		1600	1
	Web width (w) =	voluding web (b1) =		190	N
	Top flange thickne	se $(t) =$			THEOR
	Bottom flange widt	h <b>excluding</b> web (b2) =	•••••••••••••••••••••••••••••••••••	0	6 values
	Bottom flange thick	(ness(b) =			may
	Axial compressive	load (P) and		0	he
	Depth from top sur	face of this load (di)		0	Zero
	Assumed tensile or	racking stress (f't)		0	<
		and the second s			
	Steel Elastic Modu	lus (Es)		200,000	
STEP 2	Steel Elastic Modu Describe steel s describe location o bottom surface. I Modular ratio	lus (Es) sizes and locations of the centroid of up to 10 Describe Location of eac (n=Es*(1+Ct)/Ec) =	0 bar bundles from e h bundle from only o = 11	200,000 ither the top or the ne surface.	
TEP 2	Steel Elastic Modu	lus (Es) sizes and locations of the centroid of up to 1 Describe Location of eac (n=Es*(1+Ct)/Ec) =	0 bar bundles from e h bundle from only o = 11	200,000 ither the top or the ne surface. BOTTOM B/	ARS
TEP 2	Steel Elastic Modu	lus (Es) sizes and locations of the centroid of up to 1 Describe Location of eac (n=Es*(1+Ct)/Ec) =	0 bar bundles from e th bundle from only o = 11 No of	200,000 ither the top or the ne surface. BOTTOM B/ Bar	ARS
No. Bars	Steel Elastic Modu	lus (Es) sizes and locations of the centroid of up to 1 Describe Location of eac (n=Es*(1+Ct)/Ec) = Distance From Top Surface	0 bar bundles from e th bundle from only o = 11 No of Bars	200,000 ither the top or the ne surface. BOTTOM B/ Bar Diam	ARS Distance From Bottom Surface
No, Bars	Steel Elastic Modu	lus (Es) sizes and locations of the centroid of up to 1 Describe Location of eac (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00	0 bar bundles from e h bundle from only o = 11 No of Bars 0	200,000 ither the top or the ne surface. BOTTOM B/ Bar Diam 0.00	ARS Distance From Bottom Surface 0.00
TEP 2 No. Bars 1 1	Steel Elastic Modu	lus (Es) sizes and locations of the centroid of up to 10 Describe Location of eac (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00	0 bar bundles from e th bundle from only o = 11 No of Bars 0 0	200,000 ither the top or the ne surface. BOTTOM B/ Bar Diam 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00
TEP 2 No. Bars 1 1 1	Steel Elastic Modu	lus (Es) sizes and locations of the centroid of up to 10 Describe Location of eac (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00	0 bar bundles from e th bundle from only o = 11 No of Bars 0 0 0 0	200,000 ither the top or the ne surface. BOTTOM B/ Bar Diam 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00
TEP 2	Steel Elastic Modu	lus (Es) sizes and locations of the centroid of up to 10 Describe Location of eac (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00 1300.00	0 bar bundles from e th bundle from only o = 11 No of Bars 0 0 0 0	200,000 ither the top or the ne surface. BOTTOM B/ Bar Diam 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00
TEP 2	Steel Elastic Modu	lus (Es) sizes and locations of the centroid of up to 1 Describe Location of eac (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 900.00 1300.00 0.00	0 bar bundles from e th bundle from only o = 11 No of Bars 0 0 0 0 0 0	200,000 ither the top or the ne surface. Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00
TEP 2	Steel Elastic Modu	lus (Es) sizes and locations of the centroid of up to 10 Describe Location of eac (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00 1300.00 0.00	0 bar bundles from e th bundle from only o = 11 No of Bars 0 0 0 0 0 0 0	200,000 ither the top or the ne surface. Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TEP 2	Steel Elastic Modu	lus (Es) sizes and locations of the centroid of up to 10 Describe Location of eac (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00 1300.00 0.00 0.00 0.00	0 bar bundles from e th bundle from only o = 11 No of Bars 0 0 0 0 0 0 0 0	200,000 ither the top or the ne surface. BOTTOM B/ Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
TEP 2	Steel Elastic Modu	lus (Es) sizes and locations of the centroid of up to 10 Describe Location of eac (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 900.00 1300.00 0.00 0.00 0.00	0 bar bundles from e th bundle from only o = 11 No of Bars 0 0 0 0 0 0 0 0 0 0	200,000 ither the top or the ne surface. Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
TEP 2 No. Bars 1 1 1 1 0 0 0 0 0	Steel Elastic Modu	lus (Es) sizes and locations of the centroid of up to 10 Describe Location of eac (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 900.00 1300.00 0.00 0.00 0.00 0.00	0 bar bundles from e h bundle from only o 11 No of Bars 0 0 0 0 0 0 0 0 0 0 0 0 0	200,000 ither the top or the ne surface. BOTTOM B/ Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

Bottom Spandrel Gridline A

Concrete ultimate strain (e)	0.003	
Ratio of (stress block)/(N A ) depths	0.85	
Axial compressive load (P) and	0.05	
denth from ton surface of this load (di)	0	
Crack root topsile stress (say 0 5ft)	0	
Concrete Electic Medulus (Es)	0.0	
	18,401	
Concrete compressive strength (f'c)	12	
Steel Elastic Modulus (Es)	200,000	N N
Steel Yield Stress (Fy)	325	
	-	
Analysis results shown below correspond to the conditions that e	exist	
when the peak compression strain equals (e) given above. A r	ectangular	
stress block with average stress=0.85f'c is assumed.		
		<b>O</b> [*]
FOR ULTIMATE MOMENT SECTION ANALYSIS:	X	
	$\sim$	
a) CRACK PROPAGATING FROM BOTTOM		
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c)	1,12E+02	
(a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension)	1.12E+02	
(a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth	1.12E+02 3.25E+02 1.49E+03	
(a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P)	1.12E+02 3.25E+02 1.49E+03 1.96E+05	Potio T/C -
a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P)	1.12E+02 3.25E+02 1.49E+03 1.96E+05	Ratio T/C =
(a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05	Ratio T/C = 1.000
(a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08	Ratio T/C = 1.000 (=1.0 for iteratio
(a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
(a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
(a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c )	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
(a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
(a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c)	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05 1.59E+02	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
(a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension)	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05 1.59E+02 3.25E+02	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
(a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05 1.59E+02 3.25E+02 1.44E+03	Ratio T/C = 1.000 (=1.0 for iteratio convergence)
(a) CRACK PROPAGATING FROM BOTTOM Depth to N.A.(zero stress) from top (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P) Total Compression Force -incl. comp steel Nominal Flex strength (Mn)SEE NOTE 2 Section Curvature (from curv = e/c ) b) CRACK PROPAGATING FROM TOP Depth to N.A.(zero stress) from bottom (c) Steel Stress (Maximum Tension) Crack Depth Total Tension Force (including P)	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05 1.59E+02 3.25E+02 1.44E+03 2.61E+05	Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C =
(a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05 1.59E+02 3.25E+02 1.44E+03 2.61E+05 2.61E+05	Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C = 1.000
(a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05 1.59E+02 3.25E+02 1.44E+03 2.61E+05 2.61E+05 2.61E+05 2.18E+08	Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C = 1.000 (=1.0 for iteratio
(a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05 1.59E+02 3.25E+02 1.44E+03 2.61E+05 2.61E+05 2.61E+05 2.18E+08 1.89E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C = 1.000 (=1.0 for iteratio convergence)
(a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05 1.59E+02 3.25E+02 1.44E+03 2.61E+05 2.61E+05 2.18E+08 1.89E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C = 1.000 (=1.0 for iteratio convergence)
(a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)	1.12E+02 3.25E+02 1.49E+03 1.96E+05 1.96E+05 1.66E+08 2.68E-05 1.59E+02 3.25E+02 1.44E+03 2.61E+05 2.61E+05 2.18E+08 1.89E-05	Ratio T/C = 1.000 (=1.0 for iteratio convergence) Ratio T/C = 1.000 (=1.0 for iteratio convergence)

## WELCOME TO CONPROP(V 1.8) ** AN EXCEL SPREADSHEET FOR ANALYSING CONCRETE SECTIONS FOR FLEXURE UNDER UNCRACKED, CRACKED AND ULTIMATE CONDITIONS, IN ACCORDANCE WITH NZS 3101.



			FTOJECI.	WEGC Science B	lock
			Computed:	M Geddes	
TEP1.	Describe the Ur	cracked Section	· · · · · · · · · · · · · · · · · · ·	Date:	Time:
	(use consistent ur	its e.g. N and mm		23-Sep-15	10:12
	through out the sp	readsheet)			
	Total Section depth	(d) =		1800	1
	Web width (w) =			. 190	
	Top flange width ex	cluding web (b1) =		0	<
-	Top flange thicknes	s (t) =		0	THESE
	Bottom flange widtr	excluding web (b2) =	••••••	0	6 values
	Bottom flange thick	ness (b) =		0	may
	Axial compressive in	bad (P) and,	**********	0	be
	Depth from top sur			0	zero
- C.	Assumed tensile cra	acking stress (f't)		0	<
		<b>S - - - - - - - - - -</b>	CAUTO CONTRACTOR CONTRACTOR		and the second se
 TEP 2 [	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio	izes and locations f the centroid of up to 10 b escribe Location of each b (n=Es*(1+Ct)/Ec) =	oar bundles from e bundle from only o	200,000 wither the top or the one surface.	
 TEP 2 [	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio	izes and locations f the centroid of up to 10 b escribe Location of each b (n=Es*(1+Ct)/Ec) =	oar bundles from e bundle from only o	200,000 tither the top or the one surface.	
TEP 2 [	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio	izes and locations f the centroid of up to 10 b escribe Location of each b (n=Es*(1+Ct)/Ec) =	bar bundles from e bundle from only o	200,000 wither the top or the one surface.	ARS
TEP 2 [ No. Bars	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio TOP BARS Bar Diam	izes and locations f the centroid of up to 10 b escribe Location of each b (n=Es*(1+Ct)/Ec) =	bar bundles from e bundle from only o 11 No of Bars	200,000 wither the top or the one surface. BOTTOM BA Bar Diam	ARS Distance From Bottom
TEP 2 [ No. Bars	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio TOP BARS Bar Diam	izes and locations izes and locations f the centroid of up to 10 b escribe Location of each b (n=Es*(1+Ct)/Ec) = Distance From Top Surface	bar bundles from e bundle from only o 11 No of Bars	200,000 either the top or the one surface. BOTTOM BA Bar Diam	ARS Distance From Bottom Surface
TEP 2 [ No. Bars 1	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio TOP BARS Bar Diam 16.00	izes and locations izes and locations f the centroid of up to 10 b escribe Location of each b (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00	bar bundles from e bundle from only o 11 No of Bars 0	200,000 wither the top or the one surface. BOTTOM BA Bar Diam	ARS Distance From Bottom Surface 0.00
TEP 2 [ No. Bars 1 1	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio TOP BARS Bar Diam 16.00 16.00	izes and locations izes and locations f the centroid of up to 10 b escribe Location of each b (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00	ar bundles from e bundle from only o 11 No of Bars 0 0	200,000 hither the top or the one surface. Bar Diam 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00
TEP 2 [ No. Bars 1 1 1 1	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio TOP BARS Bar Diam 16.00 16.00 16.00 16.00	izes and locations izes and locations f the centroid of up to 10 b escribe Location of each b (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00	bar bundles from e bundle from only o II No of Bars 0 0 0 0	<u>200,000</u> wither the top or the one surface. BOTTOM BA Bar Diam 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00
No. Bars 1 1 1 1 1	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio TOP BARS Bar Diam 16.00 16.00 16.00 16.00 16.00	izes and locations izes and locations f the centroid of up to 10 b escribe Location of each b (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00 1300.00	ar bundles from e bundle from only o 11 No of Bars 0 0 0 0 0	200,000 bither the top or the me surface. BOTTOM BA Bar Diam 0.00 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00
TEP 2 [ No. Bars 1 1 1 1 1 1 1	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio TOP BARS Bar Diam 16.00 16.00 16.00 16.00 16.00 16.00	izes and locations izes and locations f the centroid of up to 10 b escribe Location of each b (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00 1300.00 1700.00	bar bundles from e bundle from only o 11 No of Bars 0 0 0 0 0 0	200,000 wither the top or the one surface. BOTTOM BA Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00
TEP 2 TEP 2 No. Bars 1 1 1 1 1 1 0	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio TOP BARS Bar Diam 16.00 16.00 16.00 16.00 16.00 0,00	izes and locations izes and locations f the centroid of up to 10 b escribe Location of each b (n=Es*(1+Ct)/Ec) = Distance From Top Surface 100.00 500.00 900.00 1300.00 1700.00 0.00	No of Bars 0 0 0 0 0 0 0	200,000 ither the top or the ine surface. Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TEP 2 [ No. Bars 1 1 1 1 1 1 0 0	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio TOP BARS Bar Diam 16.00 16.00 16.00 16.00 16.00 0.00 0.00	us (Es)         izes and locations         f the centroid of up to 10 b         escribe Location of each b         (n=Es*(1+Ct)/Ec) =         Distance         From Top         Surface         100.00         500.00         900.00         1300.00         0.00         0.00	nar bundles from e bundle from only o 11 No of Bars 0 0 0 0 0 0 0 0 0 0	200,000 bither the top or the one surface. Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
TEP 2 [ No. Bars 1 1 1 1 1 1 0 0 0 0	Steel Elastic Module Describe steel s describe location o bottom surface. D Modular ratio TOP BARS Bar Diam 16.00 16.00 16.00 16.00 16.00 16.00 0.00 0.00 0.00	us (Es)         izes and locations         f the centroid of up to 10 b         escribe Location of each b         (n=Es*(1+Ct)/Ec) =         Distance         From Top         Surface         100.00         500.00         900.00         1300.00         1700.00         0.00         0.00	ar bundles from e bundle from only o n No of Bars 0 0 0 0 0 0 0 0 0 0 0 0 0	200,000 bither the top or the me surface. BOTTOM BA Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
TEP 2 No. Bars 1 1 1 1 0 0 0 0 0	Steel Elastic Module         Describe steel s         describe location o         bottom surface.         D         Modular ratio         TOP BARS         Bar         Diam         16.00         16.00         16.00         16.00         16.00         0.00         0.00         0.00	us (Es)         izes and locations         f the centroid of up to 10 b         escribe Location of each b         (n=Es*(1+Ct)/Ec) =         Distance         From Top         Surface         100.00         500.00         900.00         1300.00         1700.00         0.00         0.00         0.00	ar bundles from e bundle from only o 11 No of Bars 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200,000 ither the top or the me surface. BOTTOM BA Bar Diam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ARS Distance From Bottom Surface 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

Top Spandrel Gridline A

-	-	-	 	-

Ratio of (stress block)/(N.A.) depths Axial compressive load (P) and, depth from top surface of this load (di) Crack root tensile stress (say 0.5f't) Concrete Elastic Modulus (Ec) Concrete compressive strength (f'c) Steel Elastic Modulus (Es) Steel Yield Stress (Fy)	0.85 0 0.0 18,401 12 200,000	
Axial compressive load (P) and, depth from top surface of this load (di) Crack root tensile stress (say 0.5f't) Concrete Elastic Modulus (Ec) Concrete compressive strength (f'c) Steel Elastic Modulus (Es) Steel Yield Stress (Fy)	0 0 0.0 18,401 12 200,000	
depth from top surface of this load (di) Crack root tensile stress (say 0.5f't) Concrete Elastic Modulus (Ec) Concrete compressive strength (f'c) Steel Elastic Modulus (Es) Steel Yield Stress (Fy)	0 0.0 18,401 12 200,000	
Crack root tensile stress (say 0.5rt) Concrete Elastic Modulus (Ec) Concrete compressive strength (f'c) Steel Elastic Modulus (Es) Steel Yield Stress (Fy)	0.0 18,401 12 200,000	
Concrete Elastic Modulus (Ec) Concrete compressive strength (f'c) Steel Elastic Modulus (Es) Steel Yield Stress (Fy)	18,401 12 200,000	
Concrete compressive strength (f'c) Steel Elastic Modulus (Es) Steel Yield Stress (Fy)	12 200,000	
Steel Elastic Modulus (Es) Steel Yield Stress (Fy)	200,000	
Steel Yield Stress (Fy)		N N
	325	
Analysis results shown below correspond to the conditions that avi	.+	
when the peak compression strain, equals (a) given above. A rest	SL	
stress block with average stress=0.85f'c is assumed	angular	
	•	$\mathbf{O}$
S FOR ULTIMATE MOMENT SECTION ANALYSIS	× `	
STOR DETIMATE MOMENT DECTION ANALISIS.		
(a) CRACK PROPAGATING FROM BOTTOM	.0.	
Depth to N.A.(zero stress) from top (c)	1.39E+02	
Steel Stress (Maximum Tension).	3.25E+02	
Crack Depth	166E+03	
Total Tension Force (including P)	2.61E+05	Ratio T/C -
Total Compression Force -incl. comp steel	2.61E+05	1 000
Nominal Elex strength (Mn)SEE NOTE 2	2.71E+08	(-1.0 for iteratio
Section Curvature (from curv = $e/c$ )	2.155-05	
	2.102-00	convergence
(b) CRACK PROPAGATING FROM TOP		
Depth to N.A.(zero stress) from bottom (c)	1.39E+02	
Steel Stress (Maximum Tension)	3.25E+02	
Crack Depth	1.66E+03	
Total Tension Force (including P)	2.61E+05	Ratio T/C =
Total Compression Force -incl. comp steel	2.61E+05	1 000
Nominal Flay strength (Ma)	2.71E+08	(=1 0 for iteratio
Nominal Flex Strength (Min)SEE NOTE 2	2.1112.00	(-1.0 101 1181 2110
Section Curvature (from curv = e/c.)	2 15E-05	convergence
Section Curvature (from curv = e/c )	2.15E-05	convergence)





C14







<17



(18







C20











Sheet IA



Appendix B

ationAct 1982 But official the o Photos of Building





xct 1982



West Elevation



**East Elevation** 







North Elevation



**Rear of building (South Elevation)** 



Releasedur



, ct 1982



South Elevation



**Ground Floor Classroom** 





Appendix C

, ation Act 1982 cuic Released under the Official International Contract of the official Plans of Building





![](_page_99_Figure_0.jpeg)

![](_page_100_Figure_0.jpeg)

![](_page_101_Figure_0.jpeg)

![](_page_102_Picture_0.jpeg)

![](_page_102_Picture_2.jpeg)

Wellington East Girls College: Source (LINZ Data Service)

![](_page_102_Picture_4.jpeg)