

Te Tāhuhu o te Mātauranga

Wellington East Girls College

Block 7 – East Wing

Detailed Seismic Assessment

Template V.1.2 28/01/2016 **Prepared By: Opus International Consultants**

For the Ministry of Education

Earthquake Resilience Programme

Wellington East Girls College Block 7 Detailed Seismic Assessment

Document Control Records

Telephone:	04 471 7000	
Email:	info@opus.co.nz	

Revision History

Docume	ent Prepared by:		
Opus Int	ternational Ltd		
L8, Maje	estic Centre, 100	Willis Street, Wellington	
PO Box	12005, Wellingto	n, 6144	N
Telepho	ne: 04 471	7000	~ Č
Email:	info@op	pus.co.nz	
Web:	www.op	us.co.nz	
	on History	tor	
Revision No.	Prepared By	Description	Date
0	9(2)(a)	Draft for review	9/10/2015
1		Draft for review	11/12/2015
2		Final	28/01/2016

Document Acceptance

Action	Name	Signed	Date
Site Visit by: CPEng #	9(2)(a)		28/01/2016
Prepared by: CPEng #			28/01/2016
Reviewed by: CPEng #			28/01/2016
Approved by: CPEng #			28/01/2016

Executive Summary

This building report provides the results of a Detailed Seismic Assessment completed for the following building by the Ministry of Education's Engineering Panel. The report provides a detailed assessment of the building's %NBS seismic capacity, highlights the key seismic risks and presents recommendations for improvements to mitigate potential risks. The table below presents a summary of the assessment findings.

School	Wellington East Girls College	
Block No (PMIS).	6549	
Block Name/Description	Block 7 - East Wing	
Known Standard Design	Non-standard	
Storeys:	3	
Year of Design (approx.)	1953 – Lower storeys 2005 – 2nd Floor addition and strengthening	
Gross Floor Area (m ²)	1650	
Construction Type	Reinforced concrete walls with recent lightweight steel framed top-storey addition.	
Assessment Type	Detailed	
Date Building Inspected	10 September 2015	
Importance Level	IL3	
Structural Assessment Summary	The assessment was based upon a physical internal and external walk around, reviewing drawings and undertaking a detailed structural analysis.	
Stairs	 The stairs at the east end of the building are well protected by the surrounding concrete walls and have a low risk of collapse or significant damage in a large earthquake. The stairs accessing the 2nd floor are part of the Link Building. This bloc has not been investigated as part of this assessment. However, the 200 extension that services the 2nd floor is able to tolerate expected building movements with a low risk of collapse. 	
Current %NBS estimate	50% NBS	
List specific CSWs and life safety hazards	None	

MINISTRY OF EDUCATION Te Tähuhu o te Mätauranga

	Occupancy Considerations	No need to change the building's current occupancy	
		The building has an estimated seismic capacity of 50%NBS when assessed as an IL3 building. The governing factors are:	
		• Lack of tie beam linking the tops of the inner corridor columns in the longitudinal direction, which limits the capacity of the 2nd floor bracing along this line. The rating is governed by the ability of the large concentrically braced frame (CBF) on the front elevation to accommodate the redistributed lateral forces.	
	Conclusions & Recommendations	In order to improve the building's rating to greater than 67%NBS, the following is required.	
		 Retrofit new steel tie beams linking the tops of the columns which will allow the stability system at this level to work as intended. Improve the connections between the CBF and concrete structure by installing additional fixings at the 1st and 2nd floors. 	
		Further detailed design will need to be undertaken to develop the optimum strengthening solution.	
	Rough order of cost estimate for seismic improvements (where required)	If new tie beams and additional connections were installed, the expected rough-order cost would be approximately \$10,000 - \$50,000.	
	Timeline for remediation if required	Medium Priority	
	Jun	Jer the	
Re	eased uni		

Table of Contents

	ecutive Summary	1
1.	Introduction	4
2.	Building and Site Description	5
	2.1 Structural System	6
3.	Seismic Capacity of the Building	7
	3.1 Analysis Methodology	
	3.2 Intrusive Investigations	
	3.3 Assessment Criteria and Building Properties Assumptions	
	3.4 Seismic Capacity Assessment	10
	3.5 Structural Weaknesses & Life Safety Hazards	
4.	Seismic Improvements	
	4.1 Suggested Improvements	
	4.2 Rough Order of Cost Estimate	
5.	Conclusions & Recommendations	
	5.1 Conclusions	
	5.2 Recommendations Explanatory/Limitations Statement	
	ased under the	
800		

1. Introduction

This report provides the results of a Detailed Seismic Assessment (DSA) completed for this building by the Ministry of Education's Seismic Assessment Panel. The report provides an assessment of the building's seismic capacity, highlights the key risks and presents recommendations.

Specifically, this report:

- Provides an assessment of the building's capacity in terms of percentage of New Building Standard (%NBS) as defined in New Zealand loading standard NZS 1170.5:2004.
- Identifies any specific Critical Structural Weaknesses (CSWs) or life safety hazards associated with the building and presents recommendations for seismic improvements (if required).

The assessment has involved the following:

- Review of calculations, drawings, specifications and geotechnical information where available.
 - Architectural and Structural drawings of Wellington East Girls College New Wing by the Ministry of Works dated 1952. Job Number AWDO 20776, sheets 01 to 23.
 - Specifications of Wellington East Girls College New Wing by the Ministry of Works dated 1952. Job Number AWDO 20776.
 - Structural drawings of Wellington East Girls College East Wing Block 7 Structural Strengthening by Connell Wagner Limited 2003. Project Number 7970, sheets S01 to S06.
 - Structural drawings of Wellington East Girls College extension to East Wing Block 7 by Connell Wagner Limited 2005. Project Number 797012, sheets S00 to S26.
 - Architectural drawings of Wellington East Girls College East Block Classroom Additions by Fiona Christeller Architects 2005. Project Number 0501, sheets 100 to 401.
 - Structural drawings and calculations of Wellington East Girls College East Wing Block
 7 Seismic Strengthening by Aurecon dated 8 March 2012. Project Number 228499.
- Undertaking detailed analysis to determine the seismic strength of the building in accordance with current New Zealand design and material standards to determine the buildings compliance with current building code requirements.
- Where elements of the building have been identified as not meeting acceptable levels of seismic strength, recommendations for seismic improvements are made. Rough order of cost estimates for the structural improvements are included where they are recommended.

For further background information on the Detailed Seismic Assessment (DSA) process please refer to the Ministry of Education website - this includes commentary and relevant context on Building Act compliance requirements.

2. Building and Site Description

			1
N	lumber of Storeys	3	0
G	Bross Floor Area (m²)	1650	5
Y	ear of Design (approximate)	1953	
С	Current use	Teaching Spaces	
S	Structural Alterations	2003 strengthening 2005 addition of a 3rd level	
В	Basement	None	
G	Gravity Load Resisting System	Ground and 1st floors: Reinforced concrete walls and frames. 2nd floor (2005 addition): Steel frames.	
L	ateral Load Resisting System	Ground and 1st floors: Reinforced concrete walls. 2nd floor (2005 addition): Braced steel frames and portal frames.	
W	Vall/Cladding/Roof System	Painted concrete walls, glazing. The roof system is steel or timber roof purlins supporting lightweight cladding.	
F	Toor System	The first floor is an in-situ concrete slab on downstand beams and walls. The 2nd floor is a lightweight timber floor.	
F	oundation System	Concrete slab with shallow strip and pad foundations.	
E	edu	Based upon the results of the Opus Geotechnical report dated March 2013, the subsoil classification for the site is considered to be Class B in accordance with NZS1170.5:2004	
Re160 G	Seotechnical Considerations	The report concluded Block 7 is fully founded on rock based upon geotechnical investigations around the College. The liquefaction potential for the site is assessed as nil or low due to rock at shallow depth and the groundwater table being at depth at rock/soil interface at thicker fill areas.	

2.1 Structural System

The building is generally of reinforced concrete construction, dating from the 1950s. The lateral stability system comprises concrete shear walls in both directions. In the transverse direction, these are regularly spaced along the building. In the longitudinal direction, the shear walls are concentrated to the rear of the building. Torsional response in the longitudinal direction is resisted by the transverse shear walls. The first floor slab provides a rigid diaphragm. No rigid diaphragm exists at the roof level of the original building.

Around 2005, a new lightweight 'penthouse' storey was added at roof level.

The 2005 addition consists a lightweight steel framed structure, with lightweight timber floor. The lateral stability system for this level comprises bracing in the longitudinal direction and portal frames in the transverse direction. The roof is braced on plan with extensive Reidbar cross-bracing. The timber floor, which provides a flexible diaphragm, is supported by steel beams fixed to the concrete frame below.

The longitudinal bracing is provided by tension-only cross bracing along the corridor at the rear of the building, and by the concentrically braced frame (CBF) on the front of the building. This CBF is connected to the concrete frames below via steel cleats fixed with bolts and chemical anchors. It does not have its own foundations; instead relying on the pads beneath the fin columns to which it is fixed.

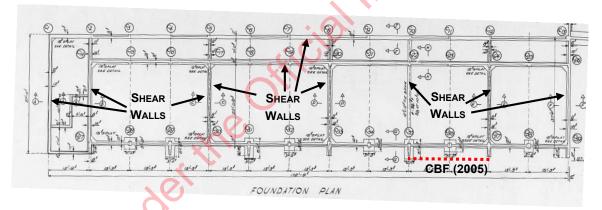


Fig. 1. Foundations and Shear Wall Layout

2010250

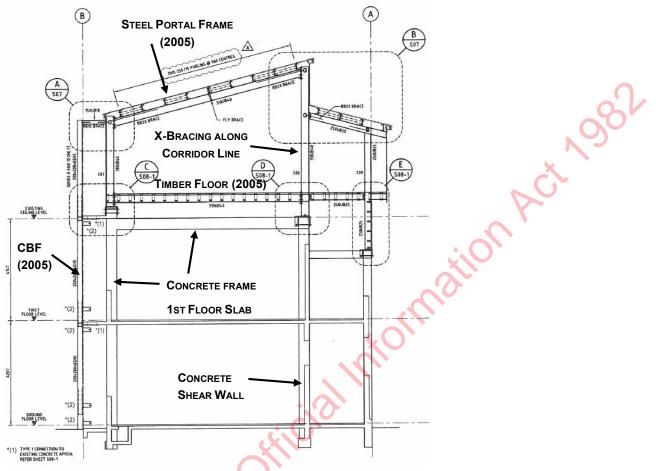


Fig. 2. Cross-section

Refer to photos of building in Appendix B and site plan in Appendix C that will assist with understanding building description.

3. Seismic Capacity of the Building

3.1 Analysis Methodology

The building was designed in 1953 by the Ministry of Works. The design predates building code NZSS1900 Chapter 8 (1965). The redevelopment in 2005 was designed by Connell Wagner Limited. The applicable design code at this time was NZS 4203 (1992).

A force-based method was used to determine the seismic capacity of the building due to its low rise and relatively stiff form. Due to the complexity of the building, which has different structural systems from different eras, the building was modelled using the ETABS 3D building analysis software. Both a modal response spectrum analysis and an equivalent static analysis was carried out in accordance with the current earthquake loading standard NZS1170.5. It was found that the equivalent static analysis gave more conservative results and was generally used to obtain demands. Demands for the lighter top storey were also obtained using NZS1170.5 Section 8 - Parts and Components.

Revision 2 28/01/2016 274 Wellington East Girls College DSA Block 7 5-PA010.37 The first floor slab comprises a 5" (127mm) thick concrete slab which provides a rigid diaphragm, distributing lateral forces to the stability elements based on their stiffness. The circa 2005 timber floor was modelled as a flexible diaphragm.

The capacity of the wall elements, columns, diaphragm connections, steel braces and portal frames were assessed using guidelines given in NZS3101, NZS3404 and the NZSEE publication Assessment and Improvement of the Structural Performance of Buildings in Earthquakes (NZSEE 2006). Hand calculations and structural software (for 2D frame models) were used to calculate the capacity and demands of the building elements.

The capacities were then compared against the demands to obtain a rating for the elements.

There were no historical/original calculations available to assist with the assessment.

3.2 Intrusive Investigations

None. The main structural elements, such as walls and bracing, are generally exposed. The site investigation generally confirmed that the original construction drawings were accurate.

3.3 Assessment Criteria and Building Properties Assumptions

The following table summarises the principal parameters used for the derivation of earthquake loads and the analysis of the building.

Parameter	Value
Design Working Life (remaining)	50 years
Importance Level	3
Return Period Factor (R)	1.3
Site Subsoil Classification	В
Period (seconds)	0.4 seconds (longitudinal direction) 0.4 seconds (transverse direction)
Hazard Factor (Z)	0.40 Wellington
Near Fault Factor (N)	1.0
Ductility Factors	Concrete elements: 1.25 – Shear
Vis	Concrete elements: 2.0 – Flexure Steel hollow sections: 1.25 Reid Braces: 1.0
SP Factors	μ ≤ 1.25: 0.9 μ ≥ 2: 0.7

The following material strengths were assumed for analysis. These are based on guidance published by the NZSEE for the original 1950s structure and current materials standards for the recent additions.

	Material	Strength
	Concrete compressive strength f'c	30 MPa
	Reinforcement (1950s)	245 MPa
20	Rolled steel sections	Grade 300
	Steel hollow sections	Grade 350
20	Reid Brace	500 MPa

3.4 Seismic Capacity Assessment

The following table summarises the %NBS capacity for the various seismic resisting elements in the building bases on the detailed seismic analysis.

Element	%NBS Capacity	Commentary
2nd Floor wall bracing: Reid Braces and connections	75%NBS	Experience from the Canterbury Earthquakes has shown that Reid Brace connections can fail in a brittle manner. The RB25 cross-braces and their connections at this level were therefore assessed for elastic demands.
2nd Floor wall bracing: Cantilevering concrete columns	50%NBS (In combination with the External CBF Frame – see below)	The RB25 cross-braces connect to the top of the original concrete columns. The original drawings do not show a tie beam between the columns at this level. The brace forces must, therefore, be resisted only by individual cantilevering columns. They have some capacity to resist the demands and load can be transferred to the large bracing frame (CBF) on the front elevation via the roof bracing as these columns begin to yield. Therefore there is some redundancy in the system.
External CBF frame Connections	>50%NBS	This frame is the main stability element in the longitudinal direction for the top storey. The main concrete structure at ground and first floors does not rely on the frame for stability. The demands on the CBF are largely dependant on the effectiveness of the cross braces along the corridor wall line (see above). Due to the probable lack of a tie beam linking the bottom of these braces, lateral loads at this level will tend to redistribute to the front CBF.
2500		The frame is connected to the concrete structure through bolted fixings on the beams at 1st and 2nd floor and down the columns. The frame does not have its own foundations and instead relies on these connections to transfer forces out into the main concrete structure. The connections between the beams and concrete frame are quite eccentric and have a limited capacity. They are assessed as having a capacity of between 50 and 60%NBS, based on this frame taking the full demands from the penthouse roof above without any contribution from the RB25 cross-bracing along the corridor

			walls, which is somewhat conservative. If the cross braces could be relied on to be fully effective, the demands on the CBF connections would be lower and its rating would be approximately 70-90%NBS.	
	Concrete walls in-plane shear strength	>85%NBS	The building has a number of concrete shear walls that provide a high level of strength, stiffness and redundancy.	52
	Concrete walls in-plane flexural strength	>90%NBS	The concrete shear walls in both directions are relatively long and squat so are typically shear- governed.	
	First floor slab	>100%NBS	The in situ slab has a high level of strength to enable it to transfer forces to the stability elements.	
	Concrete frames	>100%NBS	The stiffness of the building and strong diaphragms will keep displacements low and protect the concrete frames from excessive damage.	
	Concrete walls out-of- plane strength	>100%NBS	There is only a flexible diaphragm at the original roof/ second floor level, so the concrete walls may need to support themselves in the out-of-plane at this level. The walls have sufficient capacity to resist the demands.	
	Second floor concrete beams out-of- plane strength	95%NBS	Similarly, the beams at this level have a high capacity to resist out-of-plane demands.	
	2005 strengthening to rear corridor walls	>100%NBS	It is unlikely that the steel braces added to the original concrete rear corridor walls will attract very much force, due to the stiffness differences between them and long concrete wall elements.	
Reles	Foundations	>80%NBS	The building is founded on rock using shallow strip and pad foundations. Some rocking of the shear walls may occur, which could cause the allowable bearing pressure to be exceeded in localised areas. However, the building is robust and should be able to tolerate some rocking and moderate settlements without risk to its stability.	

The assessment confirms that the building achieves an overall seismic capacity of 50% NBS.

MINISTRY OF EDUCATION Te Tähuhu o te Mātauranga

Released under the Official Information Act 1982 This corresponds to a Grade B building as defined by the New Zealand Society for Earthquake Engineering (NZSEE) building grading scheme.

<u>98</u>

3.5 Structural Weaknesses & Life Safety Hazards

3.5.1 Potential Critical Structural Weaknesses

No Critical Structural Weaknesses were identified in this assessment.

3.5.2 Specific Critical Structural Weaknesses

No Critical Structural Weaknesses were identified in this assessment.

3.5.3 Concrete Shear Walls

The original part of the building relies on a number of concrete shear walls for its stability in both directions. These are reasonably strong and well distributed. The concrete shear walls have a minimum seismic rating of 85%NBS due to their shear capacity at the ground floor.

The walls have low aspect ratios and are shear governed. The concrete shear walls were found to have a minimum seismic rating of 90%NBS in flexure.

3.5.1 Diaphragms

The concrete floor diaphragm on the first floor is rigid enough to transfer the total lateral load to the walls in both directions. Generally, the connection between the walls and diaphragm is adequate to transfer the demand forces. On the north elevation, where the slab joins the walls at the east end stairwell, the connection is quite weak. Here, some damage may occur in the floor slab. Alternative load paths are available, however, and there is little risk of the slab losing support.

The roof to the 2005 addition utilises on-plan Reidbraces to transfer lateral forces between the stability elements. These braces all have a minimum seismic rating of 100%NBS.

3.5.2 Concrete Frames - Generally

Concrete frames generally provide gravity support to the building, with stability provided by the shear walls. The stiff first floor diaphragm, along with the large number of shear walls orientated in both directions, resisting any torsion, will keep displacements very low. This will protect the frame elements from excessive damage to enable them to continue to provide gravity support.

The concrete frames have a minimum seismic rating of 100%NBS.

3.5.3 2nd Floor Steel Frames – Tension-only Bracing

In the longitudinal direction, the top storey is stabilised by the large concentrically braced frame on the north elevation and by two braced bays along the line of the inner corridor wall. These braced bays use tension-only RB25 Reidbraces. Due to observations of non-ductile behaviour of Reidbraces in the Canterbury Earthquakes, these were assessed only for elastic (μ =1.0, Sp=0.9) demands. The Reidbraces have a minimum seismic rating of 75%NBS, limited by the capacity of their connections to the main concrete structure.

The braces transfer forces to the main concrete structure below through their connection to the cantilevering concrete columns. The assessment of these elements are described below.

3.5.4 Concrete Cantilevering Columns Supporting Second Floor

On the interior corridor wall, the columns cantilever approximately 1m above the wall line, forming clerestory windows. No tie beam in the longitudinal direction linking the top of these columns is shown on the original construction drawings. However, it appears that one was assumed to be present when designing the 2005 addition, as the Connell Mott MacDonald drawings show an existing tie beam. Site inspections undertaken for this assessment indicated that there is not a tie beam present.

The cross-bracing for the 2005 addition fixes to the tops of four of these columns. A lack of tie beam means that bracing forces are therefore concentrated on these individual columns rather than being shared along the row. These columns are able to provide some resistance through cantilever action to transfer lateral forces from the braces in to the main structure. The capacity of these cantilevering columns is approximately 55%NBS due to the lack of a tie beam. If these columns did begin to yield and deflect, however, lateral load from the top storey would tend to redistribute to the large CBF on the front elevation, which has some spare capacity. Based on this alternative load path being utilised, with some (very limited) resistance still provided by the tension-only braces/ cantilevering columns, the overall system stability in the longitudinal direction is assessed to be at least 50%NBS.

3.5.5 Concentrically Braced Frame on North Elevation

The large concentrically braced frame (CBF) on the north elevation provides stability to the top storey. As the relative stiffness of the main concrete structure is high compared to the CBF, the main concrete structure does not seem to rely on the CBF for any bracing. As part of the analysis, a study was undertaken assessing the effects of disconnecting the frame from the main concrete structure, and it was found that this did not have a large effect on the concrete structure. The CBF is, however, the main stability element for the top storey in the longitudinal direction and does provide some redundancy to the lower concrete structure. The CBF are largely affected by the effectiveness of the top storey's longitudinal cross-bracing and cantilevering columns along the corridor wall line (see previous section).

The CBF is connected to the concrete structure via steel cleats and anchor bolts. At each level, the horizontal beam is connected to the concrete frame through six cleat connections, which each have 4 Hilti anchors. These connections are eccentric and consequently, only two of the anchors can really be fully engaged. Treating the top storey as a part in order to calculate lateral earthquake demands, and assuming only a minor contribution (less than 10%) from the cross-bracing along the corridor wall line, the seismic rating of the connections at Level 2 and Level 1 is assessed as being between 50% and 60% NBS. Failure of the connections will principally affect the stability of the top storey roof. The 2nd floor itself is fixed to the concrete frames, which are able to act in bending to support lateral demands.

The concentrically braced frame (CBF) has a minimum seismic rating of 50%NBS, based on the capacity of its connections and assuming that it has to provide the majority of support to the top storey in the longitudinal direction. If, however, the cross-braces and cantilevering columns along the corridor wall line were to be effective, then the demands on the CBF would reduce and it would have a rating of around 70%NBS.

3.5.6 Foundations

The building is founded on rock using shallow strip and pad foundations. Analysis indicated that in a large earthquake, some of the shear walls may rock. The rocking action will increase the foundation stresses at the ends of the walls. Since the rock is expected to have a relatively high bearing capacity, this should not lead to excessive settlements. An assessment of a typical wall rocking on its foundation indicated that the ground bearing capacity may be exceeded at demands corresponding to approximately 80%NBS.

In order to assess displacement demands on a rocking wall, an approximate push-over analysis was carried out on a typical wall. This indicated that the displacement demand at 1st floor would be approximately 80mm, which corresponds to a drift of around 1.9%.

The structure has a moderate level of ductility and overall robustness that should allow it to tolerate this level of drift and/ or some localised foundation settlements without its stability being compromised.

The liquefaction potential for the site is assessed as nil or low due to rock at shallow depth and the groundwater table being at depth at rock/soil interface at thicker fill areas.

3.5.7 Stairs

The main stairs situated at the east end of the building are of in-situ construction and supported by long concrete walls which will provide a high level of protection. The risk of damage to these stairs in an earthquake is considered to be very low.

The stairs servicing the newer second floor are part of the adjacent Link Block. This block has not been investigated as part of this assessment. However, it is understood to partly date from the 1920s, with major modifications made in the 1950s, 1980s, and around 2005 when the stair was extended to provide access to the new East Block second floor.

This extension comprises a lightweight steel and timber structure built above the pre-existing concrete and unreinforced masonry structure. Due to its form of construction and relative low weight, this extension should be able to tolerate moderate building displacements without risk of collapse.

3.5.8 Secondary Structural Weaknesses & Life Safety Hazards

No Secondary Structural Weaknesses or Life Safety Hazards were identified in this assessment.

4. Seismic Improvements

4.1 Suggested Improvements

To increase the seismic %NBS capacity from 50%NBS at IL3 to achieve a minimum 67%NBS at IL3 capacity as recommended by MOE guidelines the following seismic improvements are recommended.

Description of suggested improvements:

- In order to make the stability system at the roof level work as the designer intended, new steel tie beams should be installed between the concrete columns. The tops of these columns are reasonably exposed allowing new steel SHS members to be fixed to them.
- Retrofit additional fixings to the CBF beams to improve the connectivity of the CBF to the concrete frames.

4.2 Rough Order of Cost Estimate

A rough order of cost estimate for the suggested physical improvements above is \$10,000-\$50,000 excluding GST.

The above rough order of cost estimate is for the structural improvements only and does not allow for the following:

- Building Consent Fees
- Consultancy fees
- Alterations and making good to architectural and building services components to incorporate the suggested seismic improvements.
- Other costs associated with upgrades that may be considered if a strengthening project
 was to proceed
- Cost escalations

A more accurate cost estimate should be developed after completing a detailed design for the suggested structural improvements and with the engagement of a qualified builder and/or quantity surveyor.

eleas

Wellington East Girls College Block 7 Detailed Seismic Assessment

5. Conclusions & Recommendations

5.1 Conclusions

The building achieves an overall seismic capacity of 50% NBS when considered as an Importance Level 3 building. This does meet the Ministry of Education's minimum seismic strength requirements of not being earthquake-prone in the short term, and there is no need to change the building's current occupancy.

5.2 Recommendations

The building is not earthquake prone, and there is no need to change the buildings current occupancy. Seismic improvements have been suggested to achieve a minimum seismic capacity of 67%NBS. A rough order of cost estimate for these improvements has been provided.

A recommended estimate for remediation is to be a medium priority.

Detailed design will need to be undertaken to further develop the suggested seismic improvements and provide more cost certainty. Upon completion of design documentation a building consent application will need to be lodged and approved prior to the installation of the suggested seismic improvements.

Wellington East Girls College Block 7 Detailed Seismic Assessment

6. Explanatory/Limitations Statement

- This report contains the professional opinion of Opus International Consultants as to the matters set out herein, in the light of the information available to it during preparation, using its professional judgment and acting in accordance with the standard of care and skill normally exercised by professional engineers providing similar services in similar circumstances. No other express or implied warranty is made as to the professional advice contained in this report.
- We have prepared this report in accordance with the brief as provided and our terms of engagement. The information contained in this report has been prepared by Opus International Consultants at the request of its client, the Ministry of Education, and is exclusively for its use and reliance. It is not possible to make a proper assessment of this report without a clear understanding of the terms of engagement under which it has been prepared, including the scope of the instructions and directions given to and the assumptions made by Opus International Consultants. The report will not address issues which would need to be considered for another party if that party's particular circumstances, requirements and experience were known and, further, may make assumptions about matters of which a third party is not aware. No responsibility or liability to any third party is accepted for any loss or damage whatsoever arising out of the use of or reliance on this report by any third party.
- The report is also based on information that has been provided to Opus International Consultants from other sources or by other parties. The report has been prepared strictly on the basis that the information that has been provided is accurate, complete and adequate. To the extent that any information is inaccurate, incomplete or inadequate, Opus International Consultants takes no responsibility and disclaims all liability whatsoever for any loss or damage that resulting from any conclusions based on information that has been provided to Opus International Consultants.

eleased under the

Appendix A

Asr Asr Detailed Seismic Assessment Calculations

Released under the

Released under the Official Information Act, 1982

Calculation Sheet

Project/Reference No: Grey Base Hospital	Sheet No:
Project and Description: Main Building Pile Design	Office:
***************************************	Computed: PMO
	Checked:

CONTENTS

These pages contain information and calculations on the analysis undertaken for the Detailed Seismic Assessment of Wellington East Girls' College - East Block.

Building Loads and Earthquake Forces	L/01
ETABS Model Details	M/01
Selected Drawings	S/D/01
Calculations - Summary of Results	S/ooi
Calculations - Concrete Shear Walls	S/01
Calculations – 1st Floor diaphragm	S/28
Calculations – North Elevation CBF	S/29
Calculations – 2nd Floor concrete apron	S/51
Calculations – North Elevation concrete frame	S/54
Calculations – 2005 2nd floor Addition	S/81
Calculations – Foundations	S/114
Calculations – Other Items	S/122

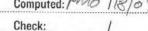
2005 2nd floor minor axis

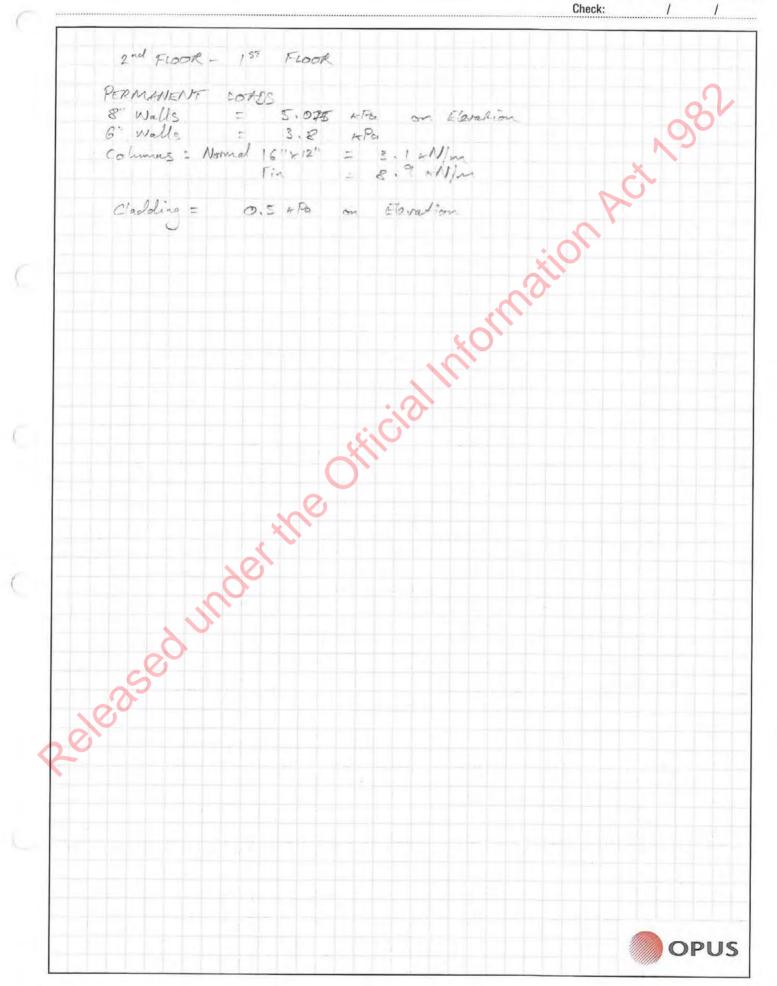
Released

L/01

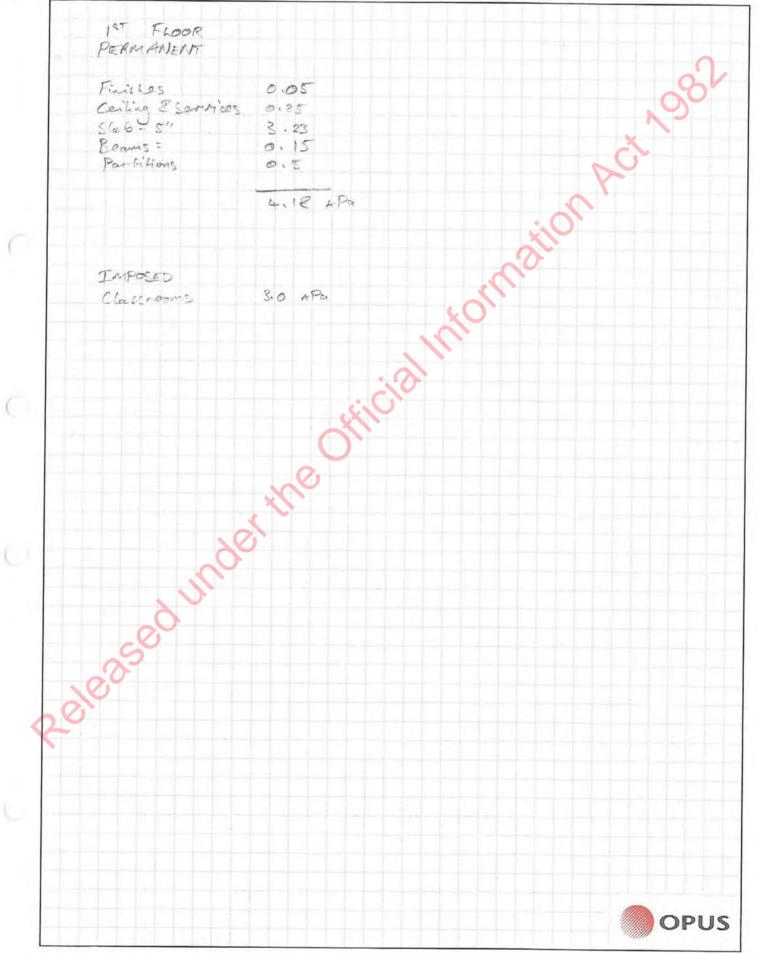
Ducie at/Teal//File May	HIC	STAGE	2
Project/Task/File No:	TTIL	SIATE	L

Project Description:


Sheet No of


Office: Computed: PMO 118/07 12015 1

Check: 1


BLOCK EAST BUILLING WEIGHTS ROOF PERMANENT Cladding 0.1 Steelwalt 0.25 acilian 2 Services 0.2 KPA 2 0.55 1Pa ROOF - 2nd FL FERMANELT Cladding DIKPA on Elovation Sieelwork O.IKPa dil. 0.2 KPa Taber 0.1 + Pa A Pb 5.0.5 2nd FLOOR PERMANENT New steel /Timber Torr 2 0.05) Finishes 0.15 \$ 0.4 x Pa Timber Steelwork 0.2 Partitions Roof: As about : 0.5 +Pa charled ONI LAPA Seelwork Out 5 KPa teiling & Services D-1 APC Concrete Beams = 10" 12" 60 4:032m c/c /7.75m long = Dilato TMPOSED Sit 4 Pa with 12 : 10.3 Callrooms **OPUS**

Llon WEGC EAST Project/Task/File No: BLOCK Sheet No of **Project Description:** Office: Computed: PMO 118/0712015

CALCULATION SHEET	4/03
Project/Task/File No: WELC EAST BLOCK	Sheet No of
Project Description:	Office:
	Computed: PMD
	Check: / /

BUILDING LOAD TAKEDOWN

6/040

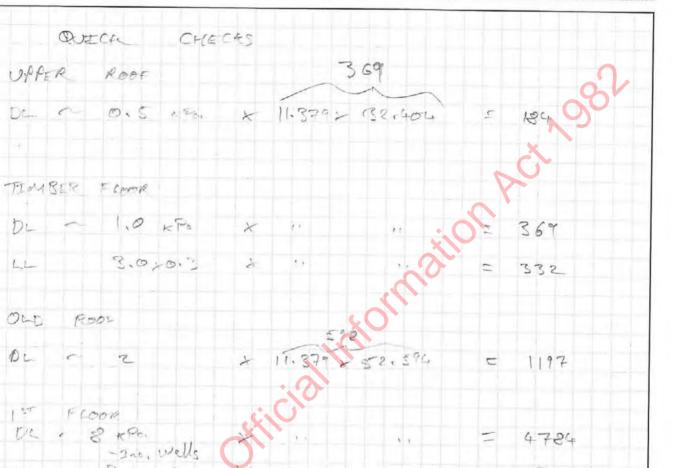
Tota		Top Roof			Rise	laval								Rise					Level						Nise						
Total Building Load Takedown Load Type		LW Roof	0.2 Ceiling & Services		4 LW Wall Cladding	2 Timher Floor		0.2 Ceiling & Services	LW Partitions Concrete Beams	LW Roof	Roof LL	Classroom LL		4.147 8" RC Wall	4.147 6" KC Wall 4.147 Fin Columns	4.147 16"x12" Columns	4.147 LW Wall Cladding		1 5" Slab	Concrete Beams 0.05 Finishes	0.25 Ceiling & Services	LW Partitions	Classroom LL		4.267 6" RC Wall	4.267 Fin Columns	4.267 16"x12" Columns 4.267 I W Wall Cladding				
Type	2	DEAD	DEAD		DEAD	DEAD	DEAD	DEAD	DEAD	DEAD	DEAD	n		DEAD	DEAD	DEAD	DEAD		DEAD	DEAD	DEAD	DEAD	IL		DEAD	DEAD	DEAD				
DF (Unit)	hundhar	0.35	0.2	5	0.5	HC C	0.05	0.2	0.5	0.35	0	0		5.1156	3.8304	3.1	0.5		3.2004	0.15	0.25	0.5	0		3.8304	8.9	3.1	<u>.</u>			
LL (Unit)			0.25	2	0	5		0		0 0	0.2			0	0 0		0		0			0	8			0	0 0	>			
'all Leneth	(m)/ Number				87.506	5		5	3	•				80	55	17	117								80 55	5	17	/11			
Area/	Length	365	365		350	1	365 365	109	365	176	176	365		330		17	~		601	601	601	601	601		339 236	21	73	437	-		
INI	and south	128	a 73	.14	175		128	120	183	90 61	0	0	2	1688	879	281	242		1923	06	150	301	0		1737 904	190	225	243	-		
	(kN)	0	91		0		0 0	0	0	0 0	44	1095		0	0	0 0	0		0	0 0	0 0	0	1803		0 0	0	0 0	0			
	(NX) SIS			292		175							1740	1			·	3211	>			1	LOCA	1674				3304			
d Coe	LL Red.		Ŧ								1	Ħ									2	(1								
efficients	Seismic Coeff.		0									0.3										(0.3	<							
	=		0 0	0	0	0	0 0	00	0	00		32		0	0	0 0	00	0	0	0	0 0	0 0	Š	541	0 0		0	0			
				0		0							329					0						541				0			
Force	ULS (KN)	128	0	2			128	120	183	06		329		1688	879	185	242	m	1923	06	30	301	541	3035	1737	1901	225	249 3304		3	
Storey				C		376		ļ										4140										6339			7
Cumulative	NRS (kN)			201		376							1305					4516						7551				10856			
By Type	DEAD	128	0	Ä	175	6 175	128	18 120	183	06	6	0 0	66	1688	879	185	219 242		1923	06	90	301			1737	100 100	225	3304			
Storey	ULS (KN)		0		0	376		m 0		0						10		3812		-	-							5799			
Cumulative	(kN)			201		376							976					4188					Ì	6682				9866			

LL

DE

0

OLD ROOL


6/046

1

1

Project/Task/File No:	WEGC	EAST	BLOCK	Sheet No	of
Project Description:				Office:	
				Computed: PMC	118/09/2015

Check:

155 FLOOR · 8 xPc. UL - Inc. Wells 3 2 0.3 11 532 -1 2

7404 With woll ~ 10000 xN looks about right. 5 FI. So metre = 10 + Par - Looks - righ (378 - 36) -

1									1
			ETABS			entre a			2/05
	Story	Load Case/Com	Location	P	VX C4	recas VY	т	MX	МҮ
	Story5	DL+SDL+0 3LL	Тор	217	0	0	0	1236	-7889
	Story5	DL+SDL+0 3LL		236	0	0	2	1397	-8561
	Story4	DL+SDL+0. 3LL		860	0	0	2	5285	-31277
	Story4	DL+SDL+0. 3LL		759	0	2	61	4105	-27604
	Story3	DL+SDL+0. 3LL		1321	0	2	59	5934	-41739
	Story3	DL+SDL+0. 3LL		714	10	-107	-2913	5624	-17457
	Story2	DL+SDL+0. 3LL		906	7	-110	-2945	7904	-24354
C	Story2	DL+SDL+0. 3LL		2285	7	-110	-2945	20461	-55452
	Story1	DL+SDL+0. 3LL		6895	0	0	0	40405	-188319
	Story1	DL+SDL+0. 3LL	Bottom	10095	0	0	0	62933	-268202
		\uparrow		Sim .	numbe	rs ta	5 Men	nal lo	rad to kectown
		LOADCA	UE I	1.00L -	+ 1.050	L +0	· 34		-268202 act to kecknown
				C					
		x	FTAE	35 Ma	del a	iver a	similar	- 1	1 -
		- 1	val	nes -	6 0	manue	=/1	load 1	a hada
1		-	D.K						annon
			<i>S</i> ()						
		60							
	. 2								

ETABS MODEL

VERTICAL LOAD CHECKS

	Story	Load Case/Com	Location	Р	vx	VY	T	мх	MY	
	Story5	Dead	Тор	51	0	0	0	294	-1868	
	Story5	Dead	Bottom	72	0	0	2	456	-2605	
	Story4	Dead	Тор	133	0	0	2	823	-4821	
	Story4	Dead	Bottom	116	0	0	9	602	-4222	
	Story3	Dead	Тор	597	0	0	7	2013	-17568	
	Story3	Dead	Bottom	359	2	-79	-2188	2603	-6362	0
	Story2	Dead	Тор	435	3	-80	-2206	3585	-9208	ol
	Story2	Dead	Bottom	1814	3	-80	-2206	16051	-40318	O'O'
	Story1	Dead	Тор	5097	0	0	0	29724	-134249	
	Story1	Dead	Bottom	8279	0	0	0	52220	-214095	
		T								
		Dead				alm			Y	
		Dead	Lond	only						
				0			5			
1							9			
						<u> </u>)			
					• 6					
					AN .					
				C						
			•							
1										
		•								
)							
		20								
	C	5								
	. 0	5								
		sed								
	*									

(

2/06

EARTHQUARE FORCES - BASE SHEAD

45 1.25 SD = 0.9

Job Title: WEGC East Block Job Number: Calcs By: PMO

Member Reference: Date: 18/09/2015 1:53:00 p.m.

12

ACt 198

Report created using Seismic Shear forces to NZS1170.5 Design Tool Version 1.1

mormation HORIZONTAL SEISMIC SHEAR (V) TO NZS 1170.5

Input Data

Period (T) = 0.4 sec Site Classification A/B Equivalent Static Method Hazard Factor (Z) (See Table 3.3) = 0.4 Importance level of 3 Design Working Life of 50 Years ULS Ductility (mu) = 1.25 SLS1 Ductility (mu) = 1.0 ULS Structural Performance Factor (Sp) = 0.9 SLS Structural Performance Factor (Sp) = 0.7 Seismic Weight (Wt) = 10000 kN

ULS Results

ULS Return Period of 1/1000 Spectral Shape Factor Ch(T) = 1.891 Return period factor from table 3.5 (Ru) = 1.30 Near Fault Factor N(T,D) = 1.000 Elastic Site Spectrum C(T) = 0.9836 Ductility Factor k(mu) = 1.143 Design Action Coefficient Cd(T) = 0.775 Horizontal Seismic Shear = 7746 kN

SLS1 Results

Return Period of 1/25 Return period factor (Rs) = 0.25 Elastic Site Spectrum C(T) = 0.1891 Ductility Factor k(mu) = 1.000 Design Action Coefficient Cd(T) = 0.132 Horizontal Seismic Shear = 1324 kN

Released under the Official Information Act 1982

L/09

Story	Same								
Story	Load Case/Com	Location	Р	VX	VY	τ	МХ	MY	
Story1	Dead	Bottom	8291	0	0	0	52220	-214574	
Story1	Live	Bottom	2760	0	0	0	16288	-83245	
Story1	SDL	Bottom	988	0	0	0	5827	-29150	
Story1	DL+SDL+O. 3LL	Bottom	10107	0	0	0		-268697	
Story1	EQENV Max	Bottom	10107	1970	1970	98800	109366	-254767	2
Story1	EQENV Min	Bottom	10107	-6568	-6568	-198380	49003	-315130	200
						horn	ndil	on Al	
				, filc	2				
				· · · · · · · · · · · · · · · · · · ·					
				Sille	•				
			the	Still)				
		nder	the	Still	•				
	2	nder	the	Still					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	sedi	inder	ine	Still					
20102	sedi	mder	the	Still					
<i>Rele</i> ?	sedi	nder	the	Still					
Relea	sedi	nder	the	Still					

 $\langle f \rangle$ 



Job Title: WEGC East Block Job Number: Calcs By: PMO

Member Reference: Date: 18/09/2015 2:18:47 p.m.

<u>ia</u>

10

PCL

Report created using Seismic Shear forces to NZS1170.5 Design Tool Version 1.1

# mormation HORIZONTAL SEISMIC SHEAR (V) TO NZS 1170.5

#### Input Data

Period (T) = 0.4 sec Site Classification A/B Equivalent Static Method Hazard Factor (Z) (See Table 3.3) = 0.4 Importance level of 3 Design Working Life of 50 Years ULS Ductility (mu) = 1.25 SLS1 Ductility (mu) = 1.0 ULS Structural Performance Factor (Sp) = 0.9 SLS Structural Performance Factor (Sp) = 0.7 Seismic Weight (Wt) = 8480 kN

#### **ULS Results**

ULS Return Period of 1/1000 Spectral Shape Factor Ch(T) = 1.891 Return period factor from table 3.5 (Ru) = 1.30 Near Fault Factor N(T,D) = 1.000 Elastic Site Spectrum C(T) = 0.9836 Ductility Factor k(mu) = 1.143 Design Action Coefficient Cd(T) = 0.775Horizontal Seismic Shear = 6568 kN

#### SLS1 Results

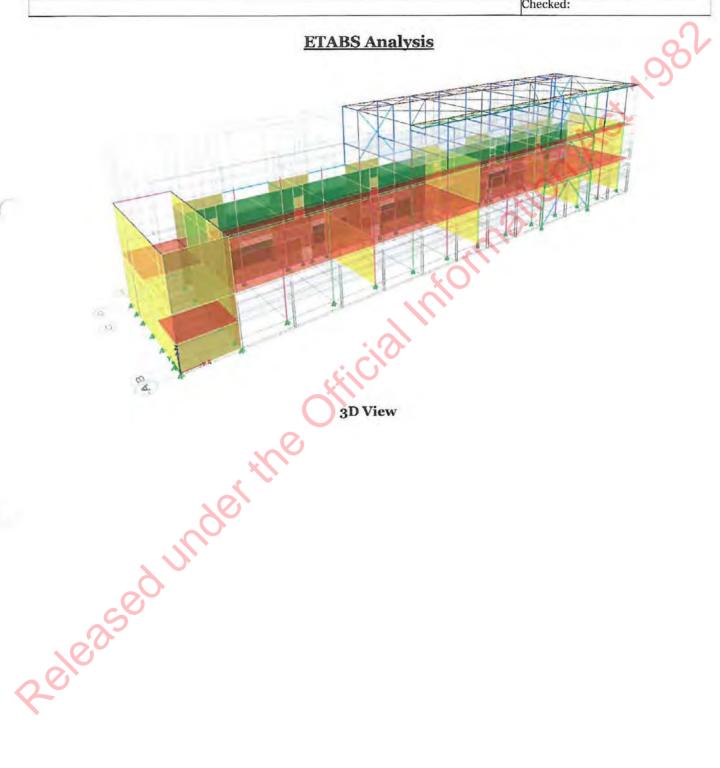
Return Period of 1/25 Return period factor (Rs) = 0.25 Elastic Site Spectrum C(T) = 0.1891 Ductility Factor k(mu) = 1.000 Design Action Coefficient Cd(T) = 0.132 Horizontal Seismic Shear = 1123 kN

#### NZS 1170 2004 Auto Seismic Load Calculation

This calculation presents the automatically generated lateral seismic loads for load pattern EQX according to NZS 1170 2004, as calculated by ETABS.

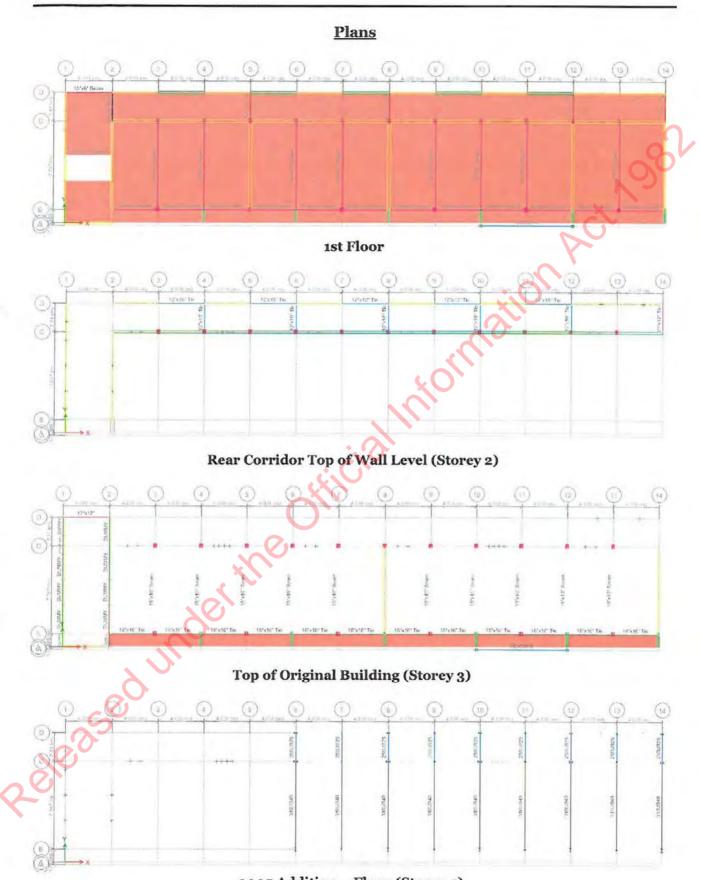
	city					
Direction = X						
Structural Period					<i>c</i> :	
Period Calculation Me	thod = <mark>Use</mark>	r Specified	- Co	nserv	ative	
User Period						T = 0.4 sec
Factors and Coefficien	ts					Å
Return Period Factor,	R [NZS Tat	ble 3.5]				R = 1.3
Hazard Factor, Z [NZS	Table 3.3]					Z = 0.4
Structural Performanc 4.4]	e Factor, Sj	p [NZS				$S_{p} = 0.9$
Structural Ductility Fac	ctor, µ [NZS	6 4.3]				μ = 1.25
Near Fault Distance, I	D [NZS 3.1.6	6]			$\mathcal{A}$	D = 10
Site Sub-soil Class [N	ZS 3.1.3] =	Be - Rock		<u> </u>	<b>)</b>	
Equivalent Lateral Ford	ces				,	
Spectral Shape Factor 3.1]	r, C(T₁) [NZ	ZS Table (	$C(T_{\tau})=1.$	6		
Seismic Design Actior (T ₁ ) [NZS 5.2.1]	n Coefficien	t, C _d	$C_q(T_i) = \frac{C}{C}$	$\frac{(T_1)S_p}{\mu}$		
Calculated Base Shear						
	Direction	Period Used (sec)	C d(T	W (kN)	V (kN)	Ft (kN)
	X	0.4	0.774562	8479.0744	6567.5721	525.4058

Loads



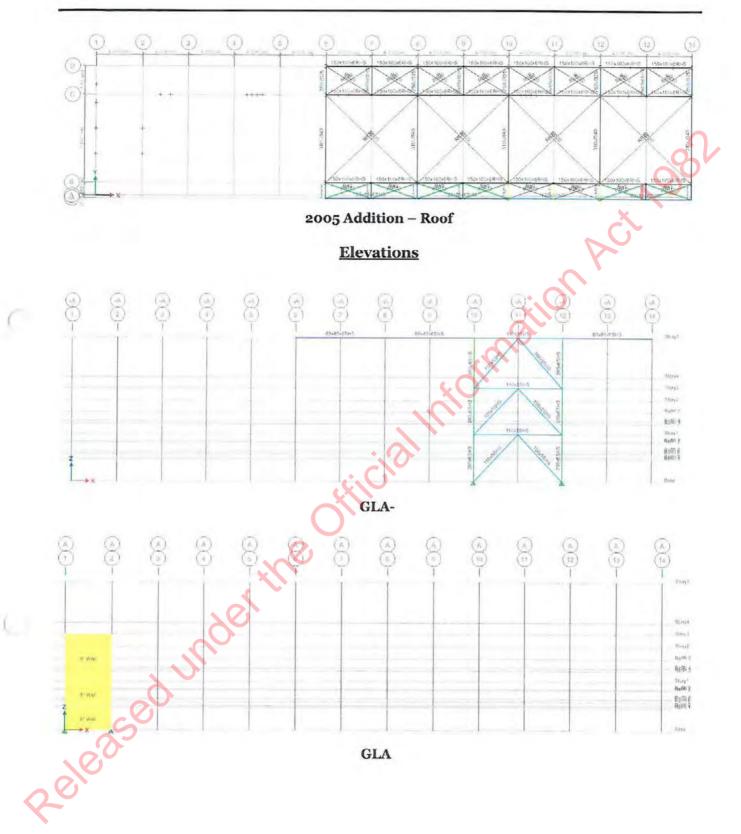



	Story5 🗲	904.3093kN						
	Story4 长 Story3 长 Story2 长	759.234kN 1041.3152kN 767.4322kN						Act
	Story1 长		3095.2	2814kN				RCL
	Para						tion	
0	Base 0.00 (	0.40 0.80 1.20 1.6 Force,		3.20 E+3		~	$\mathcal{O}$	
	Story	Elevation	X-Dir	Y-Dir	sticial			
	Story5	m 13	kN 904.3093	<b>kN</b>				
	Story4	9.44	759.234	0				
	Story3	8.414	1041.3152	0				
	Story2	7.309	767.4322	0				
			N					
0	Story1	4.267	3095.2814	0				
Ç.	Story1 Base	4.267	3095.2814 0	0				




#### **Calculation Sheet** Project/Reference No: Wellington East Girls' College East Block DSA Sheet No: Office: Project and Description: Computed: Checked:




(

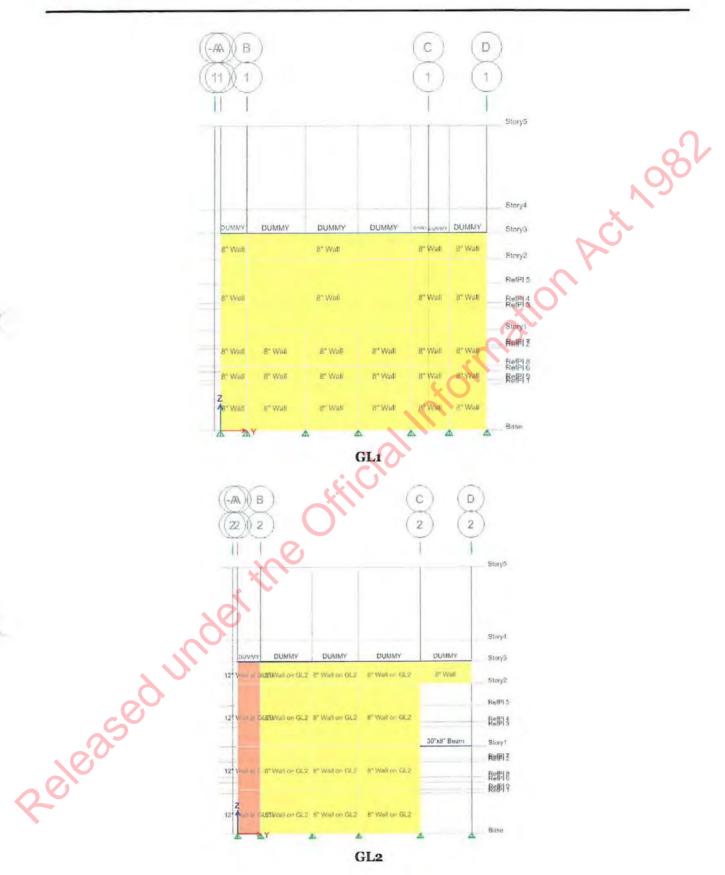




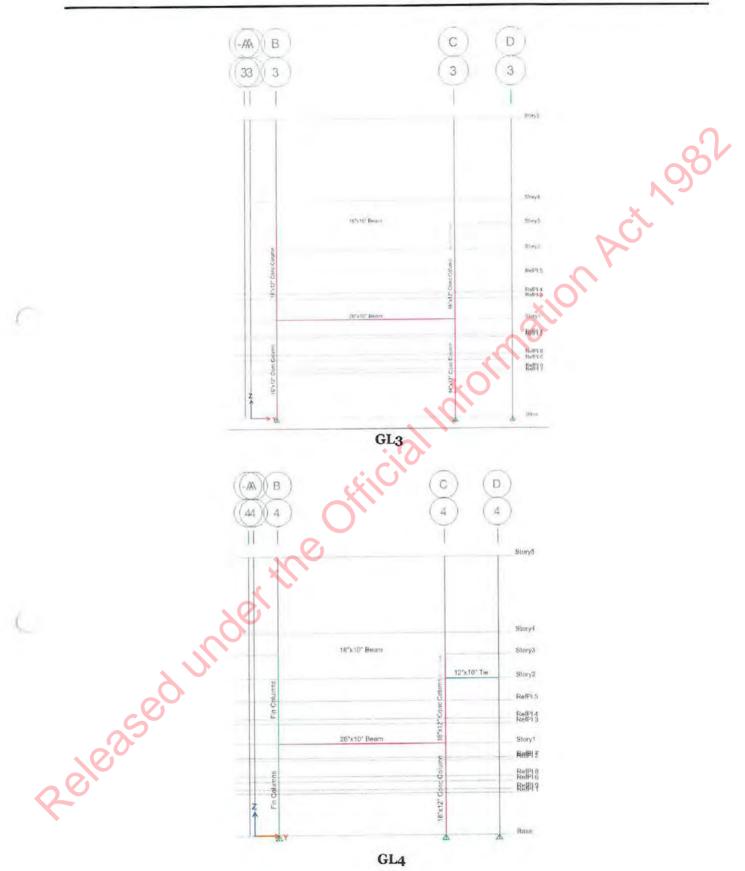
2005 Addition - Floor (Storey 4)







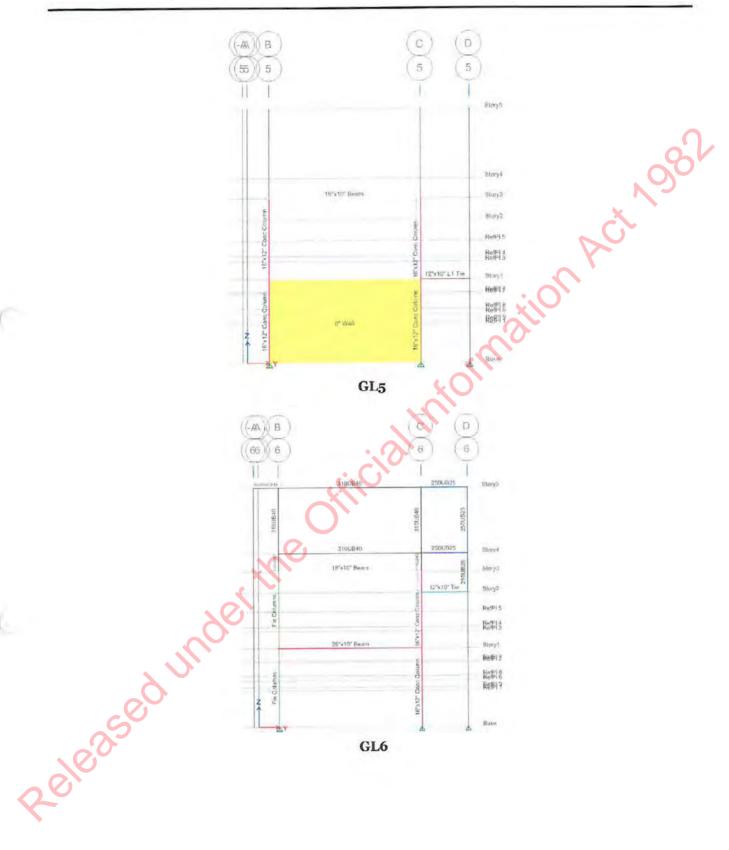


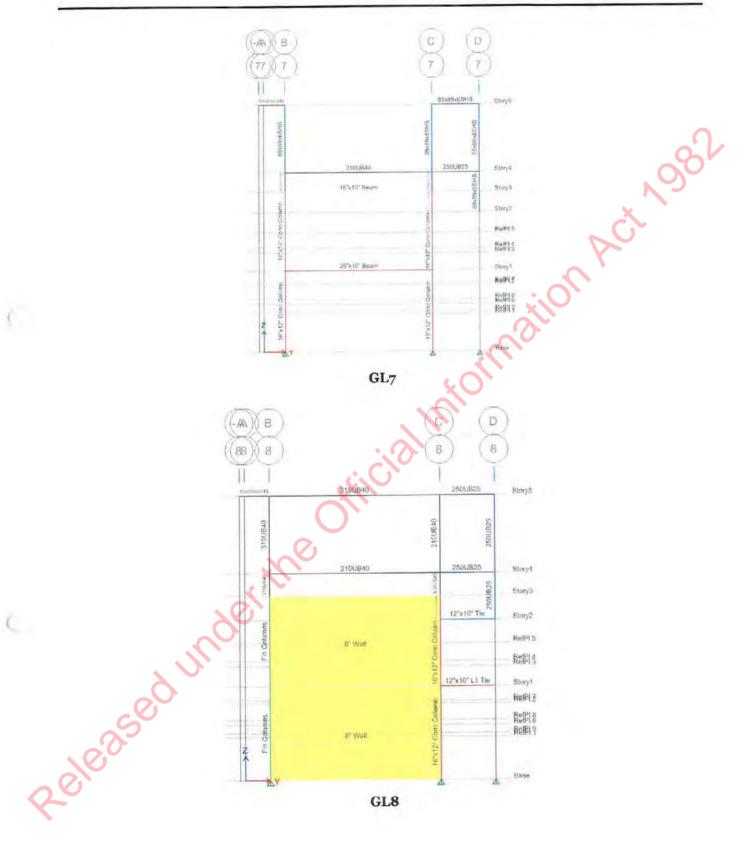



C

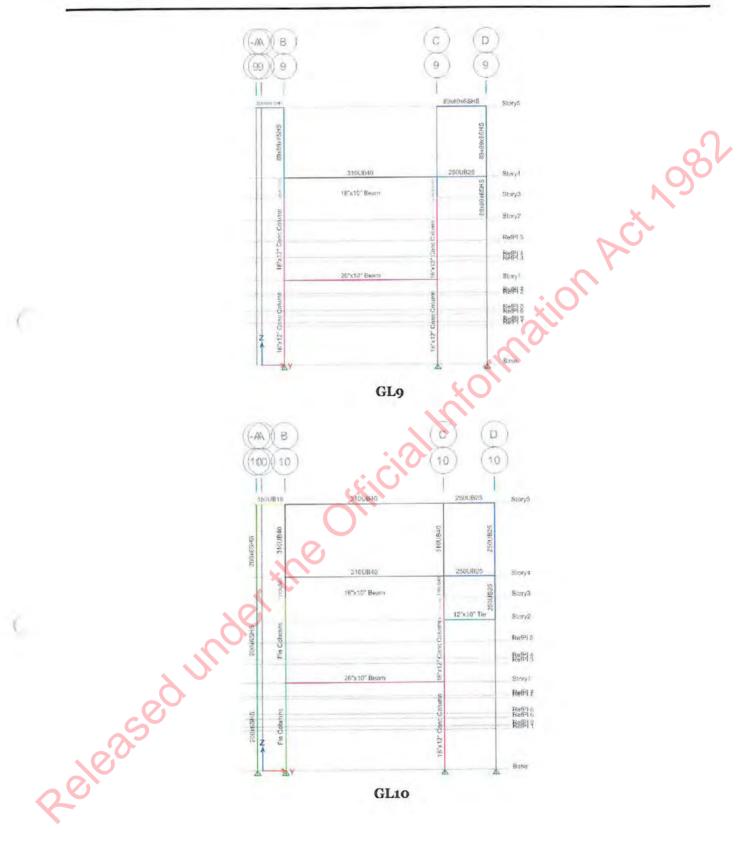




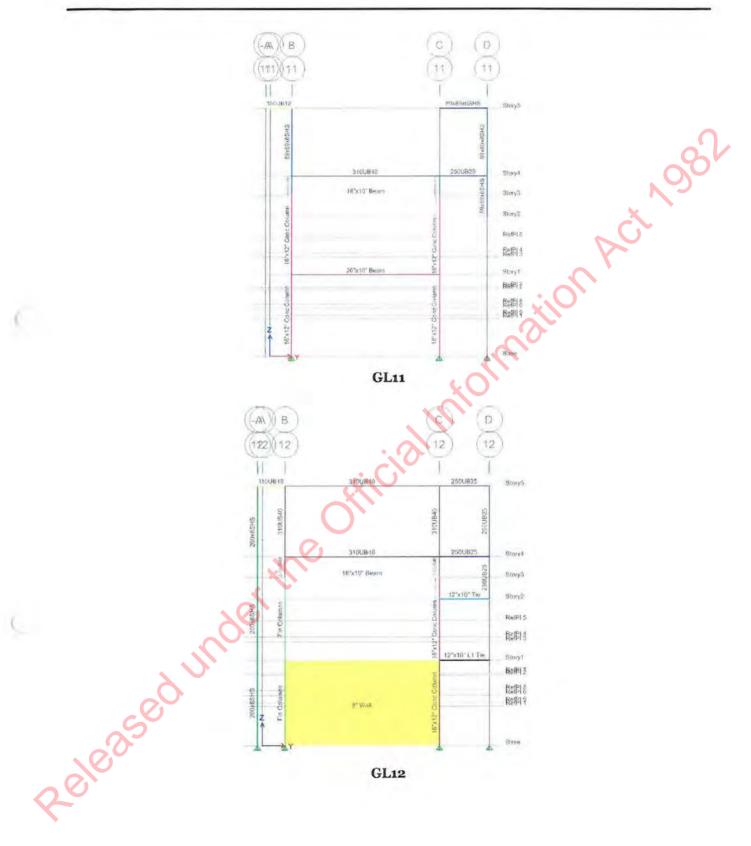


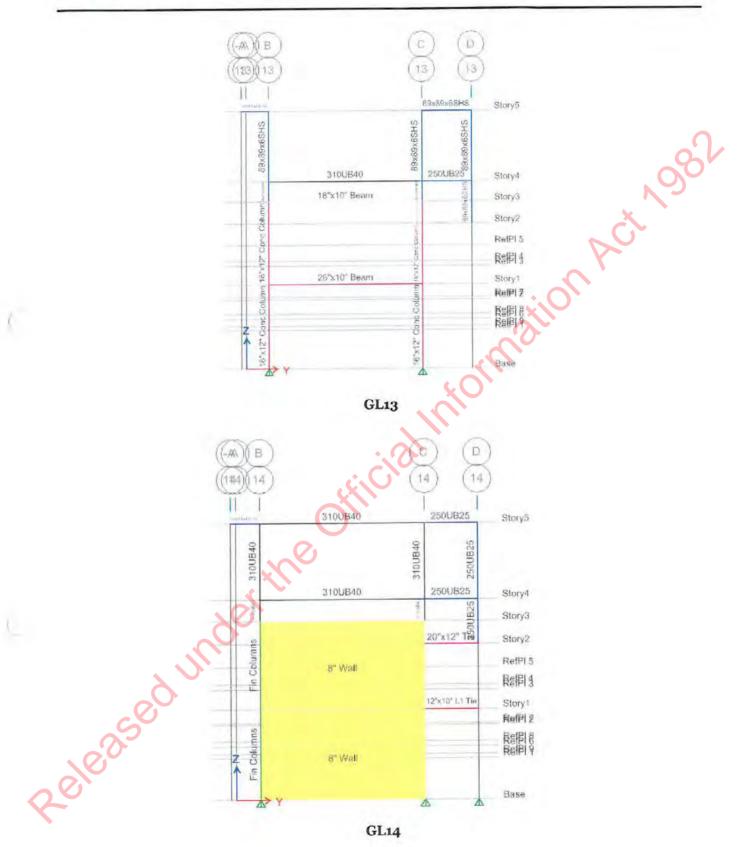

C


6

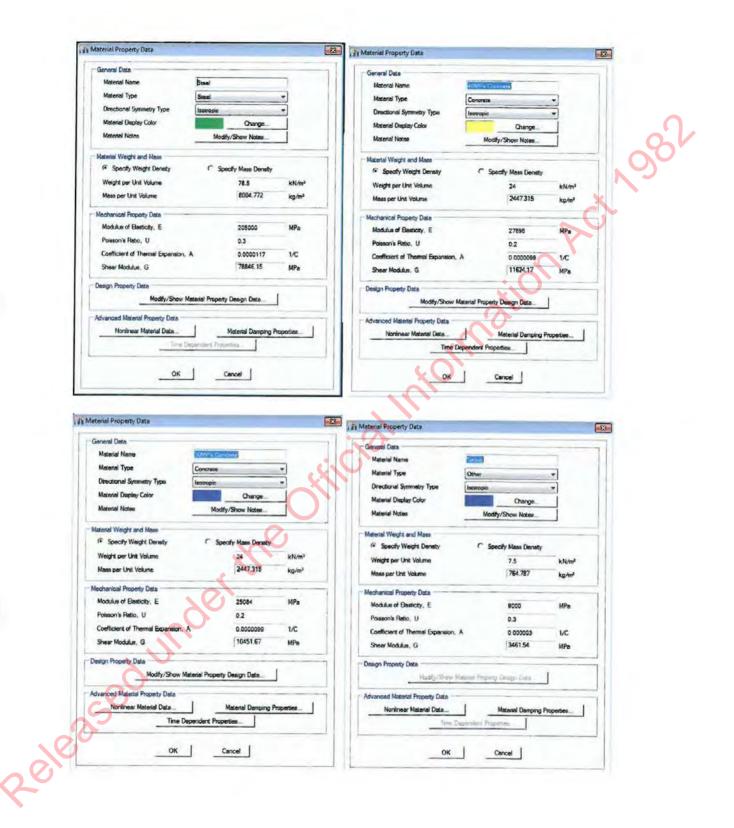








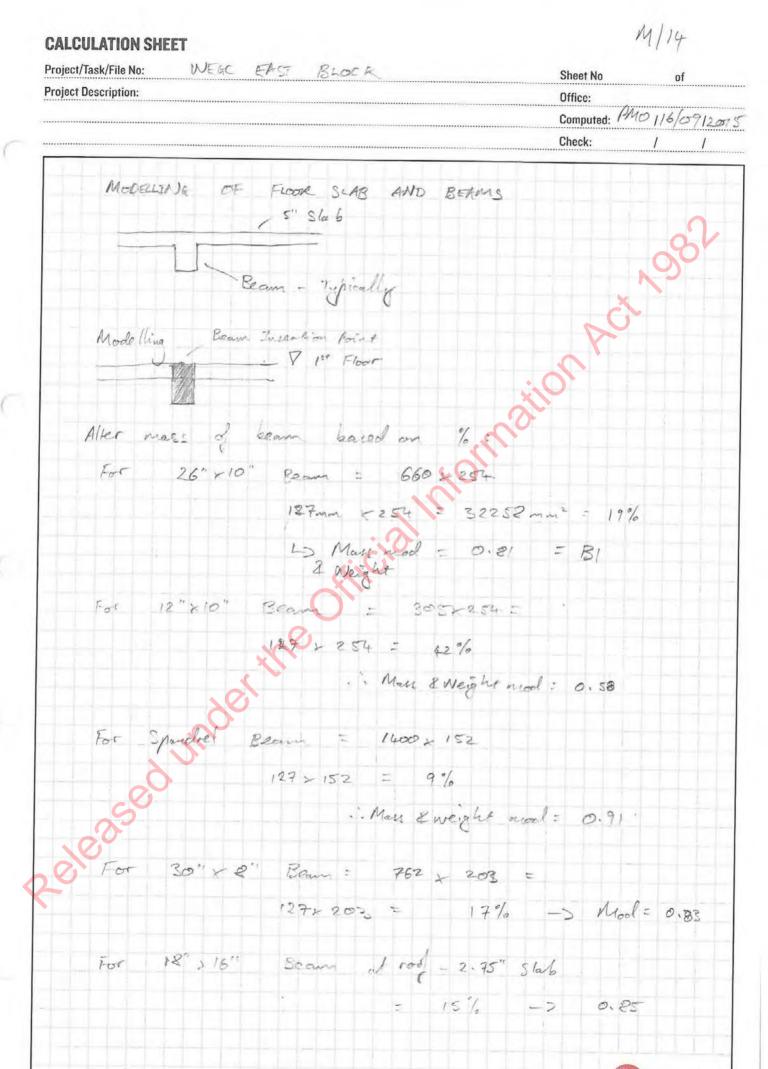







M/12




0

#### **CALCULATION SHEET**

	11/12
Project/Task/File No: WEGC EXST BLOCK	Sheet No of
Project Description:	Office:
	Computed: PMO 114/07/2015
	Check: / /

MODELINE PARAMETERS / MODIFIERS 16" × 12" COLUMNAIS Load = 300 AN -> N* = 0.08 Interpolating: 0.55 In = 0.2 0.4 7, =0.0 0.46% -> Use 045 FIN COLUMNS Area = 354302 mm 2 -> Are = 0.03 · . 0.42 In ... Use 0.42 Monitions to an equivalent rectangle: Aq = 354 302 Iax = 4.9642 212 10 4 Iyu = 2.224 210 mon 4  $A_{0} = 85756 = 1552 = 1552 = 4.947 \times 10^{10} = 1522 = 2.218 \times 10^{10} = 1522 = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{10} = 10^{$ IJ 1294 - 74 Within 1% 1294 ×274 = FIN COLUMN INSERTION FOINT: FIAS words 907 644 294 OPUS

MIR





## **CALCULATION SHEET**

Project/Task/File No: WEGE EAST BLOCK Sheet No of **Project Description:** Office: Computed: PMO 1 16/09 12015 Check: 1 1

SHARS Modifiers : Treat diaphregues as walls with · . Ie = 0.32 Ig GL2: B Corner Make wall 305 Thick of Jar (B) A Wall will need to act in of plane. Alter stiffness for m. 2 mar to 0.4 five liean. Thin or Thick Chan: 14 11 Thickness: 305 mm Use Thick Shell - ETABS guidance OTHER WALLS For out of plane, beeck don't want them to attract much lood! - M. 2 Mar = 07.2 Es & wall on GL2, use M. 2 May = @.4 OPUS

M/15

#### Mass Source:

(

Mass Source Name MsSrc1		Mass Multipliers for Load Pa Load Pattern	Mutiplier	
			- 0.3	
ass Source		SDL	1	Add
✓ Element Self Mass		Live	0.3	Modify
Additional Mass				Delete
Specified Load Patterns				
Adjust Diaphragm Lateral Mass to Move Mass Centroid		Mass Options		
Meve Directory (nounterclocksymin from +X)	deg	M include Lateral Mass		
Move (ratio to planticizan dimension in move direction)		T Include Vertical Mass		
		₽ Lump Lateral Mass at S	Story Levels	
			•. ()	

Reidbrace Modifier to allow for them working in both tension and compression in model:

Material Display Color	Steel  Change		
Notes	Modify/Show Notes		
Shape		Property/Stiffness Modification Facto	rs
Section Shape	Steel Rod *	Property/Stiffness Modifiers for Analysis	
Section Property Source		Cross-section (axial) Area	0.5
Source: User Defined	01	Shear Area In 2 direction	1
		Shear Area in 3 direction	1
Section Dimensions		Torsional Constant	1
Diameter	25 n	m Moment of Inertia about 2 axis	1
		Moment of Inertia about 3 axis	1
		Mass	1
JU,		Weight	1
60-	Show Section Properties		
		OK	Cancel

M/17 **CALCULATION SHEET** Project/Task/File No: Sheet No of **Project Description:** Office: Computed: 1 Check: 1 1 RRACES Tension - only RB25 used for top stores. Model and there by tension - only, so reduce stiffness by 50% to account in model. in Accial cross- we fion all area reduced to 0.5. FLOOR SYSTEM. Floor = "posisonet" timber trucos N Myster Treat at plexible disphoregon For modelling purposes, add nominal theel beams be finecon columns ~ E. 15002. 8 to Fie columns & add 11mm Thick Plu. ROOF AFFICATION ME Lofre Add nod lords and DOL'S to beams TOP ROOT Cimin Dy Secondary Siec O.25 A ceiling/services DL = 0.1 0.1 0.45 +Pa LL=0 5 4.038 × 0.45 = 1.82 KN/m For End beams. Int. beams = 2×4.038× 0.45 = 3.63 ×1/m LOW ROOF Beams @ 4.038m generally -> 1.82 KN/m 2.076m Apacina = 3.63 x1/m For OPUS

# CJI KNOWLEDGE BASE

General Topics SAP2000 CSiBridge ETABS SAFE PERFORM-3D CSiCOL Tutorials Test Problems Documentation Licensing



Technical Knowledge Base / Home / Shell Thin vs. Thick shells

Added by Mike Abell, last edited by Jessica Napier on Apr 07, 2014

## What is the difference between thin and thick shell formulations?

Answer: The inclusion of transverse shear deformation in plate-bending behavior is the main difference between thin and thick shell formulation. Thin-plate formulation follows a Kirchhoff application, which neglects transverse shear deformation, whereas thick-plate formulation follows Mindlin/Reissner, which does account for shear behavior. Thick-plate formulation has no effect upon membrane (in-plane) behavior, only plate-bending (out-of-plane) behavior.

Shear deformation tends to be important when shell thickness is greater than approximately 1/5 to 1/10 of the span of platebending curvature. Shearing may also become significant in locations of bending-stress concentrations, which occur near sudden changes in thickness or support conditions, and near openings or re-entrant corners. Thick-plate formulation is best for such applications.

Thick-plate formulation is also recommended in general because it tends to be more accurate, though slightly stiffer, even for "hin-plate bending problems in which shear deformation is truly negligible. However, the accuracy of thick-plate formulation is sensitive to mesh distortion and large aspect ratios, and therefore should not be used in such cases when shear deformation is known to be small.

In general, the contribution of shear deformation becomes significant when ratio between the span of plate-bending curvature and thickness is approximately 20:1 or 10:1. The formulation itself is adequate for ratio down to 5:1 or 4:1. In that this ratio is dependent upon the projected span of curvature, shell thickness may be greater than the actual plan dimensions of a shell object.

## Stiffness for pure-bending deformation

The statement that thick shells tend to be stiffer than thin shells applies only to the bending components of shells, and to models in which meshing is too coarse.

When meshing adequately captures bending deformation, thick-shell elements are more flexible because of the additional shear deformation that is not captured through thin-shell formulation. Given pure-bending deformation, however, the thin-shell element is slightly more accurate, therefore the thick-shell element may be stiffer for coarser meshes. This effect diminishes as the mesh is refined.

stresses may be of greater concern than deflections. When shear deformation is expected to be important, we recommend the thick-shell element because it will better capture the stress distribution. This is the case not only for thicker shells, but also for regions near openings and other geometric discontinuities in which transverse shear deformation develops.

elease

Project/Task/File No:	WEGE EAS	BLOCK		Sheet No	of
Project Description:				Office:	
				Computed: 🖊	20109 1
				Check:	
	TTTTTT	TITT	TECTE		
	LOADCASES				
Both	Equivalen	e Static	Z Mochal	Responso	analy
carried	1 outi				- 00
					N
	FORM				
	EQIVALENT	STATIC		Y~	
Melled	EQIVALENT acceptable 5 Section	//	PI Ma		. 1
N251170.	5 Section	6.1.3 -	see nert	balar	mits of
			1	A days.	
			.01		
		. 9			
		· C			
		- KIN			
		0			
	0				
	N.				
	10				
0					
S					
0.0					
20					



## SECTION 6 STRUCTURAL ANALYSIS

34

M/20

#### 6.1 GENERAL

#### 6.1.1 Methods of analysis

A structural analysis to determine the action effects shall be carried out in accordance with one of the following providing the limitations of Clause 6.1.3 are complied with:

- (a) A method based on equivalent static forces as outlined in Clause 6.2; or
- (b) The modal response spectrum method as outlined in Clause 6.3;
- (c) The numerical time history method as outlined Clause 6.4.

#### 6.1.2 P-delta analysis

P-delta effects shall be considered in accordance with Clause 6.5 in analyses of design actions and deflections for the ultimate limit state.

#### 6.1.3 Limitations on the use of methods of analysis

#### 6.1.3.1 Equivalent static method

The equivalent static method of analysis shall be used only when at least one of the following criteria is satisfied:

- (a) The height between the base and the top of the structure is less than 10 m; or
- (b) The largest translational period calculated as specified in Clause 4.1.2 is less than 0.4 s; or
- (c) The structure is not classified as irregular under Clause 4.5 and the largest translational period is less than 2.0 seconds.

#### 6.1.3.2 Modal response spectrum method

The modal response spectrum method may be used on all structures that fall within the scope of this Standard provided that three-dimensional analyses shall be used when the structure is classified as torsionally sensitive under Clause 4.5.2.3.

#### 6.1.3.3 Numerical integration time history analyses

Numerical integration time history analyses may be used on all structures that fall within the scope of this Standard to verify that specific response parameters are within the limits of acceptability assumed during design. Three-dimensional time history analyses shall be used where the structure is classified as torsionally sensitive under Clause 4.5.2.3.

#### 6.1.4 Diaphragm response

#### 6.1.4.1 Requirement for modelling

For structures over 15 m in height where the structure is classified as irregular under provisions of Clause 4.5, diaphragms shall be modelled in a three-dimensional modal response spectrum or three-dimensional numerical integration time history analysis. Where diaphragms are not rigid compared to the vertical elements of the vertical action resisting system, the model should include representation of the diaphragm's flexibility.

Elastic diaphragms shall be used in structures and modelled as such.

Inelastic deformations associated with in-plane diaphragm actions resulting from earthquake induced forces shall only be permitted to occur when justified by rational analysis which has been substantiated by experimental data.

Equivalent static method acceptable to use

Loads		Self Weight	Auto	Click To: Add New Load
Load	Type	Multiplier	Lateral Load	1
Dead Live	Dead	0		Modify Load
SDL	Super Dead Seismic		NTC 1170 2004	Modify Lateral Load
EQXNEG	Seismic	000000000000000000000000000000000000000	NZS 1170 2004 NZS 1170 2004	Delete Load
EQY	Seismic Seismic	0	NZS 1170 2004 NZS 1170 2004	
EQYNEG EQYPOS	Seismic Seismic	0	NZS 1170 2004 NZS 1170 2004	OK Cancel
	d (EQXNEG)			. 0'
Define Load Patterns				XIV
Loads				Click To:
Load	Туре	Self Weight Multiplier	Auto Lateral Load	Add New Load
EQXNEG	Seismic	• 0	NZS 1170 2004	Modify Load
Dead	Dead	10		Modify Lateral Load
SDL	Super Dead Seismic	0	NZS 1170 2004	
EQXNEG	Seismic	0	NZS 1170 2004	Delete Load
FO	d Pattern - NZS 1170 2004	10	1125 1170 2004	
FO BESTIL CUA	a Pattern - NZS 1170 2004			X
EC			2	ancel
EC Direction a	and Eccentricity		arameters	
EG Direction a L X Dir	and Eccentricity	, c V	arameters Site Subsoil Class	
EQ Direction a I X Dir X Dir	and Eccentricity	Eccentricity		ancel
EG Direction a F X Dir F X Dir F X Dir	nd Eccentricity	, c V	Site Subsoil Class	B v
EC Direction a □ X Dir □ X Dir □ X Dir	and Eccentricity	Eccentricity	Site Subsoil Class Hazard Factor, Z	B T
EC Direction a □ X Dir □ X Dir □ X Dir □ X Dir Ecc. Rat	+ Eccentricity + Eccentricity - Eccentricity ic (All Diaph.) 0.1	Eccentricity	Site Subsoil Class Hazard Factor, Z Return Period Factor, R	B • • • • • • • • • • • • • • • • • • •
EC Direction a □ X Dir □ X Dir □ X Dir □ X Dir Ecc. Rat	+ Eccentricity + Eccentricity - Eccentricity ic (All Diaph.) 0.1	Eccentricity	Site Subsoil Class Hazard Factor, Z Return Period Factor, R Near Fault Distance, D (km)	8 v 0.4 1.3 10
EC Direction a □ X Dir □ X Dir □ X Dir □ X Dir Ecc. Rat	Ind Eccentricity + Eccentricity	Eccentricity iccentricity write	Site Subsoil Class Hazard Factor, Z Return Period Factor, R Near Fault Distance, D (km) Performance Factor, Sp	8 v 0.4 1.3 10 0.9
EC Direction a □ X Dir □ X Dir □ X Dir □ X Dir Ecc. Rat Overwrite	and Eccentricity + Eccentricity	Eccentricity iccentricity write	Site Subsoil Class Hazard Factor, Z Return Period Factor, R Near Fault Distance, D (km) Performance Factor, Sp Ductility Factor, u tory Range	8 v 0.4 1.3 10 0.9
EC Direction a □ X Dir □ X Dir □ X Dir □ X Dir Ecc. Rat Overwrite	and Eccentricity + Eccentricity	Eccentricity iccentricity write	Site Subsoil Class Hazard Factor, Z Return Period Factor, R Near Fault Distance, D (km) Performance Factor, Sp Ductility Factor, u	ancel B 0.4 1.3 10 0.9 1.25 Story3
EC Direction a F X Dir F X Dir F X Dir Ecc. Rat Overwrite Time Penio © Proge C User	and Eccentricity + Eccentricity	Eccentricity iccentricity	Site Subsoil Class Hazard Factor, Z Return Period Factor, R Near Fault Distance, D (km) Performance Factor, Sp Ductility Factor, u tory Range Top Story for Seismic Loads	ancel 0.4 1.3 10 0.9 1.25 Story3 •
EC Direction a F X Dir F X Dir F X Dir Ecc. Rat Overwrite Time Penio © Proge C User	and Eccentricity + Eccentricity	Eccentricity iccentricity write	Site Subsoil Class Hazard Factor, Z Return Period Factor, R Near Fault Distance, D (km) Performance Factor, Sp Ductility Factor, u tory Range Top Story for Seismic Loads Bottom Story for Seismic Loads	ancel 0.4 1.3 10 0.9 1.25 Story3 •
EC Direction a F X Dir F X Dir F X Dir Ecc. Rat Overwrite Time Penio © Proge C User	and Eccentricity + Eccentricity	Eccentricity iccentricity	Site Subsoil Class Hazard Factor, Z Return Period Factor, R Near Fault Distance, D (km) Performance Factor, Sp Ductility Factor, u tory Range Top Story for Seismic Loads	ancel 0.4 1.3 10 0.9 1.25 Story3 •
EC Direction a F X Dir F X Dir F X Dir Ecc. Rat Overwrite Time Penio © Proge C User	and Eccentricity + Eccentricity	Eccentricity iccentricity write	Site Subsoil Class Hazard Factor, Z Return Period Factor, R Near Fault Distance, D (km) Performance Factor, Sp Ductility Factor, u tory Range Top Story for Seismic Loads Bottom Story for Seismic Loads	ancel 0.4 1.3 10 0.9 1.25 Story3 •
EC Direction a F X Dir F X Dir F X Dir Ecc. Rat Overwrite Time Penio © Proge C User	and Eccentricity + Eccentricity	Eccentricity iccentricity write	Site Subsoil Class Hazard Factor, Z Return Period Factor, R Near Fault Distance, D (km) Performance Factor, Sp Ductility Factor, u tory Range Top Story for Seismic Loads Bottom Story for Seismic Loads	ancel 0.4 1.3 10 0.9 1.25 Story3 •
EC Direction a F X Dir F X Dir F X Dir Ecc. Rat Overwrite Time Penio © Proge C User	and Eccentricity + Eccentricity	Eccentricity iccentricity write	Site Subsoil Class Hazard Factor, Z Return Period Factor, R Near Fault Distance, D (km) Performance Factor, Sp Ductility Factor, u tory Range Top Story for Seismic Loads Bottom Story for Seismic Loads	ancel 0.4 1.3 10 0.9 1.25 Story3 •
EC Direction a F X Dir F X Dir F X Dir Ecc. Rat Overwrite Time Penio © Proge C User	and Eccentricity + Eccentricity	Eccentricity iccentricity write	Site Subsoil Class Hazard Factor, Z Return Period Factor, R Near Fault Distance, D (km) Performance Factor, Sp Ductility Factor, u tory Range Top Story for Seismic Loads Bottom Story for Seismic Loads	ancel 0.4 1.3 10 0.9 1.25 Story3 •
EC Direction a F X Dir F X Dir F X Dir Ecc. Rat Overwrite Time Pento G Proge	and Eccentricity + Eccentricity	Eccentricity iccentricity write	Site Subsoil Class Hazard Factor, Z Return Period Factor, R Near Fault Distance, D (km) Performance Factor, Sp Ductility Factor, u tory Range Top Story for Seismic Loads Bottom Story for Seismic Loads	ancel 0.4 1.3 10 0.9 1.25 Story3 •

C

C

M/22

8/10/2015

Loads

## 4 Loads

	<b>4 Loads</b> This chapter provides lo	oading informat	tion as applied to th	ne model.		
	4.1 Load Patterns					
			Table 4.1 - Load	l Patterns		
		Name	Туре	Self Weight Multiplier	Auto Load NZS 1170 2004 NZS 1170 2004 NZS 1170 2004	2
		Dead	Dead	1		U.
		Live	Live	0		
		SDL	Superimposed Dead	0	×	
		EQX	Seismic	0	NZS 1170 2004	
		EQXNEG	Seismic	0	NZS 1170 2004	
		EQXPOS	Seismic	0		
		EQY	Seismic	0	NZS 1170 2004	
		EQYNEG	Seismic	0	NZS 1170 2004 NZS 1170 2004	
		EQYPOS	Seismic	0	N23 11/0 2004	
		ding	offici	2/10	ormo	
			eotticit	2/1/1	ormo	
	jur		ecticit	2/1/1	ornic	
	asedur		ecticit	211	ornic	
R	eleasedur		ecticit			
R	eleasedur		eofficia			

EQUIVALENT

STATIC

LOAD COMBINATIONS

Loadcases

Ack

	Long	+	0.3 Trans
	Long	+	0.3 Trans+
3	Long	+	0.3 Trans-
4	Long	-	0.3 Trans
5	Long	-	0.3 Trans+
6	Long		0.3 Trans-
7	Long+	+	0.3 Trans
8	Long+	+	0.3 Trans+
9	Long+	+	0.3 Trans-
10	Long+	-	0.3 Trans
11	Long+	~	0.3 Trans+
12	Long+	+	0.3 Trans-
13	Long-	+	0.3 Trans
14	Long-	+	0.3 Trans+
15	Long-	+	0.3 Trans-
16	Long-	a <del>k</del> e i	0.3 Trans
17	Long-	÷	0.3 Trans+
18	Long-		0.3 Trans-
19	Trans	+	0.3 Long
20	Trans	+	0.3 Long+
21	Trans	+	0.3 Long-
22	Trans	÷	0.3 Long
23	Trans	-	0.3 Long+
24	Trans		0.3 Long-
25	Trans+	+	0.3 Long
26	Trans+	+	0.3 Long+
27	Trans+	+	0.3 Long-
28	Trans+	5	0.3 Long
29	Trans+	÷.	0.3 Long+
30	Trans+	-	0.3 Long-
31	Trans-	+	0.3 Long
32	Trans-	+	0.3 Long+
33	Trans-	4	0.3 Long-
34	Trans-		0.3 Long
35	Trans-	-	0.3 Long+
36	Trans-	-	0.3 Long-

-Long +0.3 Trans etc. making 72 in total. However, not neccessary to input all these since all that will be different is the sign (direction) rather than the magnifude.

". 36 combinations adequate.

M/23

M/24 8/10/2015

Story	Label	Unique Name	Load Pattern	Direction	Load kN/m ²
Story4	F3	7	Live	Gravity	3
Story1	F2	110	Live	Gravity	3
Story1	F4	121	Live	Gravity	3
Story1	F5	112	Live	Gravity	3
Story4	F3	7	SDL	Gravity	0.8
Story1	F2	110	SDL	Gravity	0.8
Story1	F4	121	SDL	Gravity	0.3
Story1	F5	112	SDL	Gravity	0.8
т	able 4.1	0 - Load C Name	Cases - Si		
т	able 4.1	0 - Load C Name Dead	Cases - Si Type	ummary	
Т	able 4.1	Name	Cases - Si	ummary atic	÷
т	able 4.10	Name Dead	Cases - Si Type Linear Sta	ummary atic atic	Ň
т	able 4.10	Name Dead Live	<b>Cases - Si</b> <b>Type</b> Linear Sta Linear Sta	ummary atic atic	(d)
т		Name Dead Live SDL	<b>Cases - Si</b> <b>Type</b> Linear Sta Linear Sta Linear Sta	ummary atic atic atic atic	nd
т		Name Dead Live SDL EQX	<b>Cases - Si</b> <b>Type</b> Linear Sta Linear Sta Linear Sta Linear Sta	ummary atic atic atic atic atic	n3

#### Table 4.9 - Shell Loads - Uniform

#### 4.4 Load Cases

#### Table 4.10 - Load Cases - Summary

Name	Туре
Dead	Linear Static
Live	Linear Static
SDL	Linear Static
EQX	Linear Static
EQXNEG	Linear Static
EQXPOS	Linear Static
EQY	Linear Static
EQYNEG	Linear Static
EQYPOS	Linear Static

#### 4.5 Load Combinations

#### Table 4.11 - Load Combinations

	Name	Load Case/Combo	Scale Factor	Туре	Auto
	DL+SDL+0.3LL	Dead	1	Linear Add	No
	DL+SDL+0.3LL	SDL	1		No
	DL+SDL+0.3LL	Live	0.3		No
	1.2DL+1.5LL	Dead	1.2	Linear Add	No
	1.2DL+1.5LL	SDL	1.2		No
	1.2DL+1.5LL	Live	1.5		No
	1.DSL+EQX+0.3EQY	DL+SDL+0.3LL	1	Linear Add	No
	1.DSL+EQX+0.3EQY	EQX	1		No
$\mathbf{\delta}$	1.DSL+EQX+0.3EQY	EQY	0.3		No
	2.DSL+EQX+0.3EQY+	DL+SDL+0.3LL	1	Linear Add	No
S	2.DSL+EQX+0.3EQY+	EQX	1		No
	2.DSL+EQX+0.3EQY+	EQYPOS	0.3		No
	3.DSL+EQX+0.3EQY-	DL+SDL+0.3LL	1	Linear Add	No
	3.DSL+EQX+0.3EQY-	EQX	1		No
<u> </u>	3.DSL+EQX+0.3EQY-	EQYNEG	0.3		No
	4.DSL+EQX-0.3EQY	DL+SDL+0.3LL	1	Linear Add	No
	4.DSL+EQX-0.3EQY	EQX	1		No
	4.DSL+EQX-0.3EQY	EQY	-0.3	-	No
	5.DSL+EQX-0.3EQY+	DL+SDL+0.3LL	1	Linear Add	No
	5.DSL+EQX-0.3EQY+	EQX	1		No
	5.DSL+EQX-0.3EQY+	EQYPOS	-0.3		No
	6.DSL+EQX-0.3EQY-	DL+SDL+0.3LL	1	Linear Add	No

Loads

0

M/25

8/10/2015
-----------

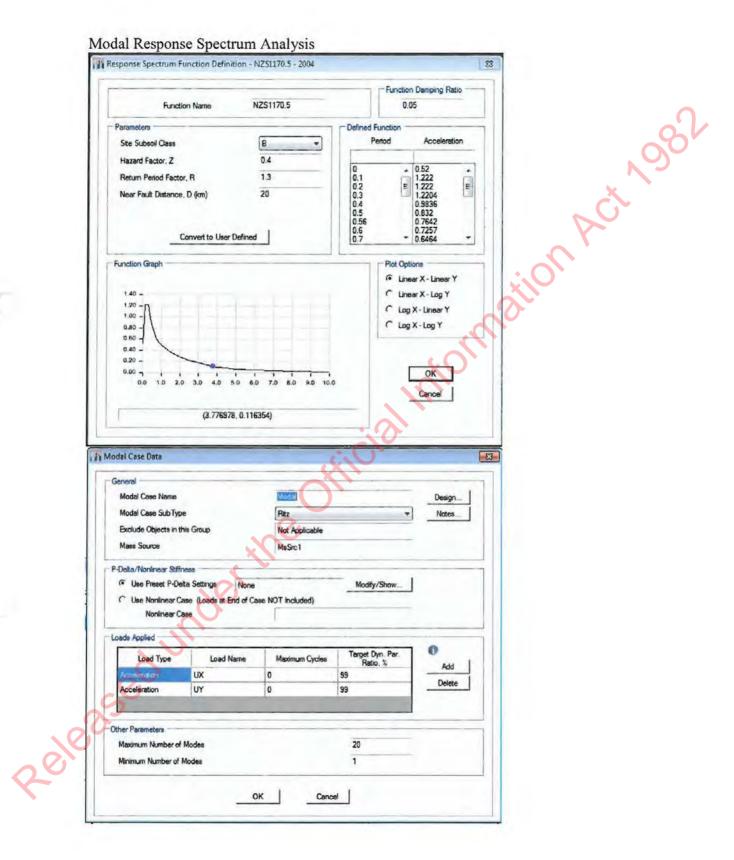
(	Name	Load Case/Combo	Scale Factor	Туре	Auto
6.DSL+	EQX-0.3EQY-	EQX	1		No
6.DSL+	EQX-0.3EQY-	EQYNEG	-0.3		No
7.DSL+I	EQX++0.3EQY	DL+SDL+0.3LL	1	Linear Add	No
7.DSL+8	QX++0.3EQY	EQXPOS	1		No
7.DSL+	EQX++0.3EQY	EQY	0.3		No
8.DSL+E	QX++0.3EQY+	DL+SDL+0.3LL	1	Linear Add	No
8.DSL+E	QX++0.3EQY+	EQXPOS	1		No
8.DSL+E	QX++0.3EQY+	EQYPOS	0.3		No
9.DSL+E	QX++0.3EQY-	DL+SDL+0.3LL	1	Linear Add	No
9.DSL+E	QX++0.3EQY-	EQXPOS	1		No
9.DSL+E	QX++0.3EQY-	EQYNEG	0.3		No
10.DSL+	EQX+-0.3EQY	DL+SDL+0.3LL	1	Linear Add	No
10.DSL+	EQX+-0.3EQY	EQXPOS	1		No
Annual Annual Section of Section 1	EQX+-0.3EQY	EQY	-0.3		No
The second se	EQX+-0.3EQY-	DL+SDL+0.3LL	1	Linear Add	No
and the second se	QX+-0.3EQY-	EQXPOS	1	- Tour du	No
and the second sec	EQX+-0.3EQY-	EQYNEG	-0.3		No
	QX+-0.3EQY+	DL+SDL+0.3LL	-0.3	Linear Add	No
and the second se	QX+-0.3EQY+	EQXPOS	<b>k</b> Ω	Lineal Aud	
	QX+-0.3EQY+	EQYPOS	-0.3		No
	EQX-+0.3EQY	DL+SDL+0.3LL	-0.5	Lincor Add	No
	EQX-+0.3EQY	EQXNEG		Linear Add	No
	EQX-+0.3EQY	EQXNEG	1		No
	QX-+0.3EQY-		0.3	I Server And A	No
	QX-+0.3EQY-	DL+SDL+0.3LL	1	Linear Add	No
Distance in the second second	QX-+0.3EQY-	EQXNEG	1		No
		EQYNEG	0.3	1.1.1.1.1.1	No
	QX-+0.3EQY+	DL+SDL+0.3LL	1	Linear Add	No
	QX-+0.3EQY+	EQXNEG	1		No
	QX-+0.3EQY+	EQYPOS	0.3		No
the second property of	EQX-0.3EQY	DL+SDL+0.3LL	1	Linear Add	No
and the second se	QX0.3EQY	EQXNEG	1		No
	QX-0.3EQY	EQY	-0.3		No
	QX0.3EQY+	DL+SDL+0.3LL	1	Linear Add	No
	QX0.3EQY+	EQXNEG	1		No
17.DSL+E	QX0.3EQY+	EQYPOS	-0.3		No
18.DSL+E	QX0.3EQY-	DL+SDL+0.3LL	1	Linear Add	No
18.DSL+E	QX0.3EQY-	EQXNEG	1		No
18.DSL+E	QX-0.3EQY-	EQYNEG	-0.3		No
19.DSL+E	EQY+0.3EQX	DL+SDL+0.3LL	1	Linear Add	No
19.DSL+E	QY+0.3EQX	EQY	1		No
0.2. 1. 1. 1. 1. 1.	QY+0.3EQX	EQX	0.3		No
20.DSL+E	QY+0.3EQX+	DL+SDL+0.3LL	1	Linear Add	No
20.DSL+E	QY+0.3EQX+	EQY	1		No
20.DSL+E	QY+0.3EQX+	EQXPOS	0.3		No
21.DSL+E	QY+0.3EQX-	DL+SDL+0.3LL	1	Linear Add	No
And a second s	QY+0.3EQX-	EQY	1		No
From Conception and Street	QY+0.3EQX-	EQXNEG	0.3		No
22.DSL+E	QY-0.3EQX	DL+SDL+0.3LL	1	Linear Add	No
22.DSL+E	QY-0.3EQX	EQY	1		No

Table 4.11 - Load Combinations (	continued)
----------------------------------	------------

M/26a

	Table 4.4	11 - Load Combinations	Innetter	a di		
	Name	Load Case/Combo	Scale	Tume	Auto	PCL
	22 DRI - FOV A BEAK	FOU	Factor			
	22.DSL+EQY-0.3EQX 23.DSL+EQY-0.3EQX+	EQX	-0.3	1 Second de	No	
	23.DSL+EQY-0.3EQX+	DL+SDL+0.3LL EQY	1	Lineer Add	No	
	23.DSL+E0Y-0.3E0X+	EQXPOS	-0.3	_	No	
	24.DSL+EQY-0.3EQX-	DL+SDL+0.3LL	1	Linear Add	No	× ×
	24.DSL+EOY-0.3EOX-	EQY	1	Californi 1400	No	
	24.DSL+EQY-0.3EQX-	EQNNEG	-0.3		No	
	25 DSL+EOY++0 3EOX	DL+SDL+0.3LL	1	Unear Add	No	
	25.DSL+EQY++0.3EQX	EQYPOS	1	Conceptor de la	No	
	25 DSL+EQY++0 3EOX	EQX	0.3		No	
	26.DSL+EQY++0.3EQX+	DL+SDL+0.3LL	1	Linear Add	No	
	25 DSL+EOY++0.3EOX+	EQYPOS	1	1. The second	No	
	28.DSL+EQY++0.3EQX+	EQXPOS	0.3		Nb	
	27 DSL=EOY+=0.3EOX-	DL+SDL+D.3LL	1	Linear Add	No	
	27.DSL+EQY++0.3EQX-	EOYPOS	1		No	
	27 DSL+EQY+=0.3EQX-	EQXNEG	0.3	1	No	
	28.DSL+EQY+0.3EQX	DL+SDL+0.3LL	1	Linear Add	No	
	28.DSL+EOY+0 3EOX	EQYPOS	4		No	
	28.DSL+EQY+-0.3EQX 29.DSL+EQY+-0.3EQX+	EQX	-0.3		No	
	29.09.+EQY+-0.3EQX+	EQYPOS		Linear Add	No	
	29.DSL+EQY+ 0.3EQX+	EOXPOS	4		No	
	30.DSL+EQY+-0.3EQX-	DL+SDL+0.3LL	1	Linear Add	No	
	30.0SL+EOY+-0.3EOX-	ECYPOS	1	Pro Martin Scottalia	No	
	30.DSL+EQY+-0.3EQX-	EOXNEG	-0.3		No	
	31.DSL+EQY-+0.3EQX	DL+SDL+0.3LL	1	Lincer Add	No	
	31.DSL+EQY-+0.3EQX	EOYNEG	1		No	
	31 DSL+EOY +0.3EOX	EOX	03		No	
	32.DSL+EQY-+0.3EQX+	DL+SDL+0 3LL	1	Linear Add	No	
	32.05L +EQY-+0.3EQX+	EQYNEG	1		No	
	32.DSL+EQY-+0.3EQX+	EQXPOS	0.3		No	
	33 DSL HEOY HO SEDX-	DL+SDL+0 3LL	1	Linser Add	No	
	33.05. +EOY-+0.3EQX- 33.05. +EOY-+0.3EQX-	EQYNEG ECXNEG	1 03	_	NO	
	34.DSL+EQY-0.3EQX	DL+SDL+D.3LL	1	Linser Add	NO	
	34 DSL+EOY-0 JEOX	EQYNEG	T	MERCEN PWW	No	
	34.DSL+EQY-0.3EQX	EQX	-0.3		No	
	35 DSL+EQY-0 SEQX+	DL+SDL+0 3LL	1	Lineer Add	No	
	35.DSL+EQY-0.3EQX+	EQYNEG	1	the second second	No	
	35 DSL FEOY-0.3EQX+	EQXPOS	-0.5		No	
$\mathbf{A}$						
5					-	
$\sim$						
0.0					-	
eased und	-					

#### 6/10/2015


#### Table 4.11 - Load Combinations (continued)

Loads

EQENV         7.DSL+EQX++0.3EQY         1           EQENV         6.DSL+EQX++0.3EQY+         1           EQENV         9.DSL+EQX++0.3EQY+         1           EQENV         10.DSL+EQX++0.3EQY+         1           EQENV         11.DSL+EQX++0.3EQY+         1           EQENV         11.DSL+EQX+-0.3EQY+         1           EQENV         12.DSL+EQX+-0.3EQY-         1           EQENV         13.DSL+EQX+-0.3EQY-         1	No No No No
EQENV         9.0SL+EQX++0.3EQY-         1           EQENV         10.0SL+EQX++0.3EQY-         1           EQENV         11.0SL+EQX++0.3EQY+         1           EQENV         12.0SL+EQX++0.3EQY-         1           EQENV         13.0SL+EQX++0.3EQY-         1	No No No
EQENV         10.DSL+EQX+-0.3EQY         1           EQENV         11.DSL+EQX+-0.3EQY+         1           EQENV         12.DSL+EQX+-0.3EQY-         1           EQENV         13.DSL+EQX+-0.3EQY-         1	No No
EQENV 11.DSL+EQX+-0.3EQY+ 1 EQENV 12.DSL+EQX+-0.3EQY- 1 EQENV 13.DSL+EQX++0.3EQY 1	No
EQENV 12.DSL+EQX+-0.3EQY- 1 EQENV 13.DSL+EQX++0.3EQY 1	
EQENV 12.DSL+EQX+0.3EQY- 1 EQENV 13.DSL+EQX+0.3EQY 1	
	No
	No
EQENV 14.DSL+EQX+0.3EDY+ 1	Nb
EGENV 15.DSL+EQX+0.3EQY- 1	No
EGENV 16 DSL*EQX-0.3EQY 1	No
EDENV 17.DSL+EQX-0.3EQY+ 1	No
ECIENV 18.09.+EOX-0.3EOY 1	No
EQENV 19.DSL+EQY+0.3EQX	No
EQENV 20.DSL+EQY40.3EQX+	No
EQENV 21.DSL+EQY+0.3EQX- 1	No
ECIENV 22.DSL+EDY-0.3EOX 1	No
EQENV 23.DSL+EQY-0.3EQX+ 1	No
EQENV 24.0SL+EQY-0.3EQX- 1	No
EQENV 25.DSL+EQY++0 3EQX 1	No
EQENV 28,05L+EQY++0.3EQX+ 1	No
EQENV 27.DSL+EQY++0.3EQX- 1	No
EGENV 28.DSL+EGY+-0.3EGX 1	No
EQENV 29.DSL+EQY+4.3EQX+ 1	No
EQENY 30.05. +EOY+-0 3EOX- 1	No
EGENV 31,DSL+EQY-+0.3EQX 1	No
EOEW 32 DSL+EOY0.3EQX+ 1	No
EGENV 33.0%L+EQY-+0.3EQX- 1	No
EGENV 34 DSL+EQY-0.3EQX 1	No
EQENV 35/DSL+EQY-0.3EQX+ 1	No
EQENV 35.0SL+EQY-0.3EQX+ 1 EQENV	140

Page 65 of 163

M/27



M/28

8/10/2015

Loads

#### 4 Loads

	This chapter provides loadir	ng informa	tion as applied to th	ne model.		
	4.1 Load Patterns	0				
			Table 4.1 - Load	Patterns		
		Name	Туре	Self Weight Multiplier	Auto Load NZS 1170 2004 NZS 1170 2004 NZS 1170 2004	l
		Dead	Dead	1		)`
		Live	Live	0		
		SDL	Superimposed Dead	0	× *	
		EQX	Seismic	0	NZS 1170 2004	
		EQXNEG	Seismic	0	NZS 1170 2004	
		EQXPOS	Seismic	0	NZS 1170 2004	
		EQY	Seismic	0	NZS 1170 2004	
		EQYNEG	Seismic	0	NZS 1170 2004	
2		EQYPOS	Seismic	0	NZS 1170 2004	
		××	¢ V			
		Ś				
	ed uno					
	leased uno					
8-°	eased uno					
8	eased und					

Page 46 of 248

3/10/2015

, ct 1982

Story	Label	Unique Name	Load Pattern	Direction	Load kN/m ³
Story4	F3	7	Live	Gravity	3
Story1	F2	110	Live	Gravity	3
Story1	F4	121	Live	Gravity	3
Story1	F5	112	Live	Gravity	3
Story4	F3	7	SDL	Gravity	0.8
Story1	F2	110	SDL	Gravity	0.8
Story1	F4	121	SDL	Gravity	0.3
Story1	F5	112	SDL	Gravity	0.8

Table 4.9 - Shell Loads - Uniform

#### 4.4 Functions

4.4.1 Response Spectrum Functions

Table 4.10 - Response Spectrum Function - NZS 1170:2004

Name	Period sec	Acceleration	Damping	Site Class	z	R	D km
NZS1170.5	0	0.52	5	в	0.4	1.3	20
NZS1170.5	0.1	1.222			12		
NZS1170.5	0.2	1.222		. 0			
NZS1170.5	0.3	1.220422		XC			
NZS1170.5	0.4	0.983571		$\langle \mathbf{O} \rangle$			
NZS1170.5	0.5	0.832				2	
NZS1170.5	0.56	0.764205	$\cdot \circ$				
NZS1170.5	0.6	0.725667	10			1.	
NZS1170.5	0.7	0.646439	U'				
NZS1170.5	0.8	0.584835				1	-
NZS1170.5	0.9	0.535388					
NZS1170.5	1	0.49471					
NZS1170.5	1.5	0.364991				1	
NZS1170.5	2	0.273					
NZS1170.5	2.5	0.2184					
NZS1170.5	3	0.182					
NZS1170.5	3.5	0.133714				11	
NZS1170.5	4	0.102375		-			
NZS1170.5	4.5	0.080889					
NZS1170.5	5	0.06552	1				
NZS1170.5	6	0.0455				1	
NZS1170.5	8	0.025594					
NZS1170.5	10	0.01638					

# 4.5 Load Cases

#### Table 4.11 - Load Cases - Summary

Type
Linear Static

M/30 8/10/2015

#### Table 4.11 - Load Cases - Summary (continued)

Name	Туре
EQYNEG	Linear Static
EQYPOS	Linear Static
RSEQX	Response Spectrum
RSEQX-	Response Spectrum
RSEQX+	Response Spectrum
RSEQY	Response Spectrum
RSEQY-	Response Spectrum
RSEQY+	Response Spectrum
~TorsionRSEQX-	Linear Static
~TorsionRSEQX+	Linear Static
~TorsionRSEQY-	Linear Static
~TorsionRSEQY+	Linear Static

#### 4.6 Load Combinations

#### Table 4.12 - Load Combinations

	RSEQX	Response	Spectrum		
	RSEQX-	Response	Spectrum		
	RSEQX+	Response	Spectrum		
	RSEQY	Response	Spectrum		
	RSEQY-	Response	Spectrum		
	RSEQY+	Response	Spectrum		
	~TorsionRSEQX-	Linear	Static		
	~TorsionRSEQX+	Linear	Static		
	~TorsionRSEQY-	Linear	Static		
	~TorsionRSEQY+	Linear	Static		
4.6 Load Combinations					5
4.6 Load Combinations	Table 4.12 - Load	d Combina	tions	j.	)
	Table 4.12 - Load	a oomonia			
Name	Load Case	/Combo	Scale Factor	Туре	Auto
DL+SDL+0.3LL	. Dea	ıd	1	Linear Add	No
DL+SDL+0.3LL	. SD	L	50		No
DL+SDL+0.3LL	. Live	e 🗸	0.3		No
1.2DL+1.5LL	Dea	d	1.2	Linear Add	No
1.2DL+1.5LL	SDI	L	1.2		No
1.2DL+1.5LL	Live	e O	1.5		No
1.DSL+EQX+0.3E	QY DL+SDL-	+0.3LL	1	Linear Add	No
1.DSL+EQX+0.3E	QY RSEC	XC	1		No
1.DSL+EQX+0.3E	QY RSEC	QY	0.3		No
2.DSL+EQX+0.3E0	QY+ DL+SDL-	+0.3LL	1	Linear Add	No
2.DSL+EQX+0.3EC	RSEC	XC	1		No
2.DSL+EQX+0.3EC	Y+ RSEC	)Y+	0.3		No
3.DSL+EQX+0.3E	QY- DL+SDL-	+0.3LL	1	Linear Add	No
3.DSL+EQX+0.3E	QY- RSEC	XC	1		No
3.DSL+EQX+0.3E	QY- RSEC	QY-	0.3		No
4.DSL+EQX-0.3E	QY DL+SDL-	+0.3LL	1	Linear Add	No
4.DSL+EQX-0.3E	QY RSEC	QX	1		No
4.DSL+EQX-0.3E	QY RSEC	QΥ	-0.3		No
5.DSL+EQX-0.3EC	QY+ DL+SDL-	+0.3LL	1	Linear Add	No
5.DSL+EQX-0.3EC	Y+ RSEC	X	1		No
5.DSL+EQX-0.3EC		)Y+	-0.3		No
6.DSL+EQX-0.3EC	QY- DL+SDL-	+0.3LL	1	Linear Add	No
5.DSL+EQX-0.3EQ 5.DSL+EQX-0.3EQ 5.DSL+EQX-0.3EQ 6.DSL+EQX-0.3EQ 6.DSL+EQX-0.3EQ 6.DSL+EQX-0.3EQ 7.DSL+EQX++0.3EQ 7.DSL+EQX++0.3EQ 7.DSL+EQX++0.3EQ 7.DSL+EQX++0.3EQ 7.DSL+EQX++0.3EQ		ЭX	1		No
6.DSL+EQX-0.3EC			-0.3		No
7.DSL+EQX++0.3E			1	Linear Add	No
7.DSL+EQX++0.3E			1		No
7.DSL+EQX++0.3E			0.3		No
8.DSL+EQX++0.3E			1	Linear Add	No
8.DSL+EQX++0.3E			1		No
0.000.000			0.3		No
8 DSI +EOX++0.3E	UY+ RSEL				
8.DSL+EQX++0.3E 9.DSL+EQX++0.3E			1	Linear Add	No

0

M/31 8/10/2015

	Name	Load Case/Combo	Scale Factor	Туре	Auto
	9.DSL+EQX++0.3EQY-	RSEQY-	0.3		No
	10.DSL+EQX+-0.3EQY	DL+SDL+0.3LL	1	Linear Add	No
	10.DSL+EQX+-0.3EQY	RSEQX+	1		No
	10.DSL+EQX+-0.3EQY	RSEQY	-0.3		No
	12.DSL+EQX+-0.3EQY-	DL+SDL+0.3LL	1	Linear Add	No
	12.DSL+EQX+-0.3EQY-	RSEQX+	1	1000	No
	12.DSL+EQX+-0.3EQY-	RSEQY-	-0.3		No
	11.DSL+EQX+-0.3EQY+	DL+SDL+0.3LL	1	Linear Add	No
	11.DSL+EQX+-0.3EQY+	RSEQX+	1		No
	11.DSL+EQX+-0.3EQY+	RSEQY+	-0.3		No
	13.DSL+EQX-+0.3EQY	DL+SDL+0.3LL	1	Linear Add	No
	13.DSL+EQX-+0.3EQY	RSEQX-	1		No
	13.DSL+EQX-+0.3EQY	RSEQY	0.3		No
	15.DSL+EQX-+0.3EQY-	DL+SDL+0.3LL	1	Linear Add	No
	15.DSL+EQX-+0.3EQY-	RSEQX-	1	A	No
	15.DSL+EQX-+0.3EQY-	RSEQY-	0.3		No
	14.DSL+EQX-+0.3EQY+	DL+SDL+0.3LL	1	Linear Add	No
	14.DSL+EQX-+0.3EQY+	RSEQX-	1		No
	14.DSL+EQX-+0.3EQY+	RSEQY+	0.3		No
	16.DSL+EQX0.3EQY	DL+SDL+0.3LL	1	Linear Add	No
	16.DSL+EQX0.3EQY	RSEQX-	1		No
	16.DSL+EQX0.3EQY	RSEQY	-0.3		No
	17.DSL+EQX0.3EQY+	DL+SDL+0.3LL	1	Linear Add	No
	17.DSL+EQX0.3EQY+	RSEOX-	1		No
	17.DSL+EQX0.3EQY+	RSEQY+	-0.3		No
	18.DSL+EQX0.3EQY-	DL+SDL+0.3LL	1	Linear Add	No
	18.DSL+EQX0.3EQY-	RSEQX-	1		No
	18.DSL+EQX-0.3EQY	RSEQY-	-0.3		No
	19.DSL+EQY+0.3EQX	DL+SDL+0.3LL	1	Linear Add	No
	19.DSL+EQY+0.3EQX	RSEQY	1		No
	19.DSL+EQY+0.3EQX	RSEQX	0.3		No
	20.DSL+EQY+0.3EQX+	DL+SDL+0.3LL	1	Linear Add	No
	20.DSL+EQY+0.3EQX+	RSEQY	1		No
	20.DSL+EQY+0.3EQX+	RSEQX+	0.3		No
		DL+SDL+0.3LL	1	Linear Add	No
X	21.DSL+EQY+0.3EQX-	RSEQY	1		No
	21.DSL+EQY+0.3EQX-	RSEQX-	0.3		No
C C C	22.DSL+EQY-0.3EQX	DL+SDL+0.3LL	1	Linear Add	No
$\sim$	22.DSL+EQY-0.3EQX	RSEQY	1		No
<u>Ö</u>	22.DSL+EQY-0.3EQX	RSEQX	-0.3		No
X	23.DSL+EQY-0.3EQX+	DL+SDL+0.3LL	-0.0	Linear Add	No
S.	23.DSL+EQY-0.3EQX+	RSEQY	1		No
	23.DSL+EQY-0.3EQX+	RSEQX+	-0.3		No
eleased	24.DSL+EQY-0.3EQX-	DL+SDL+0.3LL	1	Linear Add	No
	24.DSL+EQY-0.3EQX-	RSEQY	1		No
	24.DSL+EQY-0.3EQX-	RSEQT	-0.3	-	No
	25.DSL+EQY++0.3EQX	DL+SDL+0.3LL	-0.3	Linear Add	No
				Linear Auu	
	25.DSL+EQY++0.3EQX	RSEQY+	1		No

Table 4.12 - Load Combinations	(continued)
--------------------------------	-------------

(

M 8/10/2015

Name	Load Case/Combo	Scale Factor	Туре	Auto
26.DSL+EQY++0.3EQX+	DL+SDL+0.3LL	1	Linear Add	No
26.DSL+EQY++0.3EQX+	RSEQY+	1		No
26.DSL+EQY++0.3EQX+	RSEQX+	0.3		No
27.DSL+EQY++0.3EQX-	DL+SDL+0.3LL	1	Linear Add	No
27.DSL+EQY++0.3EQX-	RSEQY+	1		No
27.DSL+EQY++0.3EQX-	RSEQX-	0.3		No
28.DSL+EQY+-0.3EQX	DL+SDL+0.3LL	1	Linear Add	No
28.DSL+EQY+-0.3EQX	RSEQY+	1		No
28.DSL+EQY+-0.3EQX	RSEQX	-0.3		No
29.DSL+EQY+-0.3EQX+	DL+SDL+0.3LL	1	Linear Add	No
29.DSL+EQY+-0.3EQX+	RSEQY+	1		No
29.DSL+EQY+-0.3EQX+	RSEQX+	-0.3		No
30.DSL+EQY+-0.3EQX-	DL+SDL+0.3LL	1	Linear Add	No
30.DSL+EQY+-0.3EQX-	RSEQY+	1		No
30.DSL+EQY+-0.3EQX-	RSEQX-	-0.3		No
31.DSL+EQY-+0.3EQX	DL+SDL+0.3LL	1	Linear Add	No
31.DSL+EQY-+0.3EQX	RSEQY-	1.0		No
31.DSL+EQY-+0.3EQX	RSEQX	0.3		No
32.DSL+EQY-+0.3EQX+	DL+SDL+0.3LL	KQ.	Linear Add	No
32.DSL+EQY-+0.3EQX+	RSEQY-	1		No
32.DSL+EQY-+0.3EQX+	RSEQX+	0.3	1	No
33.DSL+EQY-+0.3EQX-	DL+SDL+0.3LL	1	Linear Add	No
33.DSL+EQY-+0.3EQX-	RSEQY-	1		No
33.DSL+EQY-+0.3EQX-	RSEQX-	0.3	-	No
34.DSL+EQY0.3EQX	DL+SDL+0.3LL	1	Linear Add	No
34.DSL+EQY0.3EQX	RSEQY-	1		No
34.DSL+EQY-0.3EQX	RSEQX	-0.3		No
35.DSL+EQY-0.3EQX+	DL+SDL+0.3LL	1	Linear Add	No
35.DSL+EQY0.3EQX+	RSEQY-	1		No
35.DSL+EQY-0.3EQX+	RSEQX+	-0.3		No
36.DSL+EQY0.3EQX-	DL+SDL+0.3LL	1	Linear Add	No
36.DSL+EQY0.3EQX-	RSEQY-	1	Emoury laa	No
36.DSL+EQY0.3EQX-	RSEQX-	-0.3		No
	1.DSL+EQX+0.3EQY	-0.5	Envelope	No
EQENV	2.DSL+EQX+0.3EQY+	1	Linsiopo	No
EQENV	3.DSL+EQX+0.3EQY-	1		No
EQENV	4.DSL+EQX-0.3EQY	1		No
EQENV	5.DSL+EQX-0.3EQY+	1		No
EQENV	6.DSL+EQX-0.3EQY-	1	1	No
EQENV	7.DSL+EQX++0.3EQY	1		No
EQENV	8.DSL+EQX++0.3EQY+	1		No
EQENV	9.DSL+EQX++0.3EQY-	1		No
EQENV	10.DSL+EQX+-0.3EQY	1		No
EQENV EQENV EQENV EQENV EQENV EQENV EQENV EQENV EQENV EQENV EQENV EQENV EQENV	11.DSL+EQX+-0.3EQY+	1		No
EQENV	12.DSL+EQX+-0.3EQY-	1		No
	13.DSL+EQX++0.3EQY	1	1	No
EQENV	14.DSL+EQX-+0.3EQY+	1		No
EQENV	15.DSL+EQX-+0.3EQY-	1		No
EQENV	IJ.DOLTEQA-TU.SEQT-	1		NU

Table 4.12 - Load Combinations (c	ontinued)
-----------------------------------	-----------

Loads

M/ 33 8/10/2015

2

EQENV       17.DSL+EQX-0.3EQY+       1       No         EQENV       18.DSL+EQX-0.3EQY-       1       No         EQENV       20.DSL+EQY+0.3EQX       1       No         EQENV       21.DSL+EQY+0.3EQX+       1       No         EQENV       22.DSL+EQY-0.3EQX+       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       24.DSL+EQY+0.3EQX+       1       No         EQENV       25.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       29.DSL+EQY+0.3EQX+       1       No         EQENV       29.DSL+EQY+0.3EQX+       1       No         EQENV       32.DSL+EQY+0.3EQX+       1       No         EQENV       32.DSL+EQY+0.3EQX+       1       No         EQENV       32.DSL+EQY+0.3EQX+       1       No         EQENV       32.DSL+EQY-0.3EQX+       1       No         EQENV       34.DSL+EQY-0.3EQX+ <td< th=""><th>EQENV18.DSL+EQX-0.3EQY-1NoEQENV19.DSL+EQY+0.3EQX1NoEQENV20.DSL+EQY+0.3EQX+1NoEQENV21.DSL+EQY-0.3EQX-1NoEQENV22.DSL+EQY-0.3EQX+1NoEQENV23.DSL+EQY-0.3EQX+1NoEQENV24.DSL+EQY-0.3EQX+1NoEQENV25.DSL+EQY+0.3EQX+1NoEQENV26.DSL+EQY+0.3EQX+1NoEQENV26.DSL+EQY+0.3EQX+1NoEQENV27.DSL+EQY+0.3EQX+1NoEQENV28.DSL+EQY+0.3EQX+1NoEQENV29.DSL+EQY+0.3EQX+1NoEQENV30.DSL+EQY+0.3EQX+1NoEQENV32.DSL+EQY-0.3EQX+1NoEQENV32.DSL+EQY-0.3EQX+1NoEQENV32.DSL+EQY-0.3EQX+1NoEQENV32.DSL+EQY-0.3EQX+1NoEQENV33.DSL+EQY-0.3EQX+1NoEQENV34.DSL+EQY-0.3EQX+1NoEQENV35.DSL+EQY-0.3EQX+1NoEQENV36.DSL+EQY-0.3EQX+1NoEQENV36.DSL+EQY-0.3EQX+1No</th><th>Name</th><th>Load Case/Combo</th><th>Scale Factor</th><th>Туре</th><th>Auto</th></td<>	EQENV18.DSL+EQX-0.3EQY-1NoEQENV19.DSL+EQY+0.3EQX1NoEQENV20.DSL+EQY+0.3EQX+1NoEQENV21.DSL+EQY-0.3EQX-1NoEQENV22.DSL+EQY-0.3EQX+1NoEQENV23.DSL+EQY-0.3EQX+1NoEQENV24.DSL+EQY-0.3EQX+1NoEQENV25.DSL+EQY+0.3EQX+1NoEQENV26.DSL+EQY+0.3EQX+1NoEQENV26.DSL+EQY+0.3EQX+1NoEQENV27.DSL+EQY+0.3EQX+1NoEQENV28.DSL+EQY+0.3EQX+1NoEQENV29.DSL+EQY+0.3EQX+1NoEQENV30.DSL+EQY+0.3EQX+1NoEQENV32.DSL+EQY-0.3EQX+1NoEQENV32.DSL+EQY-0.3EQX+1NoEQENV32.DSL+EQY-0.3EQX+1NoEQENV32.DSL+EQY-0.3EQX+1NoEQENV33.DSL+EQY-0.3EQX+1NoEQENV34.DSL+EQY-0.3EQX+1NoEQENV35.DSL+EQY-0.3EQX+1NoEQENV36.DSL+EQY-0.3EQX+1NoEQENV36.DSL+EQY-0.3EQX+1No	Name	Load Case/Combo	Scale Factor	Туре	Auto
EQENV       19.DSL+EQY+0.3EQX       1       No         EQENV       20.DSL+EQY+0.3EQX+       1       No         EQENV       21.DSL+EQY+0.3EQX-       1       No         EQENV       22.DSL+EQY-0.3EQX       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       25.DSL+EQY+0.3EQX+       1       No         EQENV       25.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       28.DSL+EQY+0.3EQX+       1       No         EQENV       29.DSL+EQY+0.3EQX+       1       No         EQENV       30.DSL+EQY+0.3EQX+       1       No         EQENV       33.DSL+EQY+0.3EQX+       1       No         EQENV       32.DSL+EQY+0.3EQX+       1       No         EQENV       32.DSL+EQY+0.3EQX+       1       No         EQENV       33.DSL+EQY+0.3EQX+       1       No         EQENV       35.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+	EQENV       19.DSL+EQY+0.3EQX       1       No         EQENV       20.DSL+EQY+0.3EQX+       1       No         EQENV       21.DSL+EQY+0.3EQX-       1       No         EQENV       22.DSL+EQY-0.3EQX+       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       24.DSL+EQY+0.3EQX-       1       No         EQENV       25.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       27.DSL+EQY+0.3EQX+       1       No         EQENV       28.DSL+EQY+0.3EQX+       1       No         EQENV       28.DSL+EQY+0.3EQX+       1       No         EQENV       30.DSL+EQY+0.3EQX+       1       No         EQENV       31.DSL+EQY+0.3EQX+       1       No         EQENV       32.DSL+EQY-0.3EQX+       1       No         EQENV       32.DSL+EQY-0.3EQX+       1       No         EQENV       34.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+ <td< td=""><td>EQENV</td><td>17.DSL+EQX0.3EQY+</td><td>1</td><td></td><td>No</td></td<>	EQENV	17.DSL+EQX0.3EQY+	1		No
EQENV       20.DSL+EQY+0.3EQX+       1       No         EQENV       21.DSL+EQY+0.3EQX-       1       No         EQENV       23.DSL+EQY-0.3EQX       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       24.DSL+EQY+0.3EQX-       1       No         EQENV       25.DSL+EQY+0.3EQX-       1       No         EQENV       25.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       27.DSL+EQY+0.3EQX+       1       No         EQENV       28.DSL+EQY+0.3EQX+       1       No         EQENV       29.DSL+EQY+0.3EQX+       1       No         EQENV       30.DSL+EQY+0.3EQX+       1       No         EQENV       30.DSL+EQY+0.3EQX+       1       No         EQENV       33.DSL+EQY-0.3EQX+       1       No         EQENV       33.DSL+EQY-0.3EQX+       1       No         EQENV       35.DSL+EQY-0.3EQX+       1       No         EQENV       35.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+ <td< td=""><td>EQENV       20.DSL+EQY+0.3EQX+       1       No         EQENV       21.DSL+EQY+0.3EQX-       1       No         EQENV       22.DSL+EQY-0.3EQX       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       24.DSL+EQY-0.3EQX-       1       No         EQENV       25.DSL+EQY+0.3EQX-       1       No         EQENV       25.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       27.DSL+EQY+0.3EQX+       1       No         EQENV       28.DSL+EQY+0.3EQX+       1       No         EQENV       29.DSL+EQY+0.3EQX+       1       No         EQENV       30.DSL+EQY+0.3EQX+       1       No         EQENV       30.DSL+EQY+0.3EQX+       1       No         EQENV       32.DSL+EQY+0.3EQX+       1       No         EQENV       33.DSL+EQY-0.3EQX+       1       No         EQENV       33.DSL+EQY-0.3EQX+       1       No         EQENV       35.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+       <td< td=""><td>EQENV</td><td>18.DSL+EQX0.3EQY-</td><td>1</td><td></td><td>No</td></td<></td></td<>	EQENV       20.DSL+EQY+0.3EQX+       1       No         EQENV       21.DSL+EQY+0.3EQX-       1       No         EQENV       22.DSL+EQY-0.3EQX       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       24.DSL+EQY-0.3EQX-       1       No         EQENV       25.DSL+EQY+0.3EQX-       1       No         EQENV       25.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       27.DSL+EQY+0.3EQX+       1       No         EQENV       28.DSL+EQY+0.3EQX+       1       No         EQENV       29.DSL+EQY+0.3EQX+       1       No         EQENV       30.DSL+EQY+0.3EQX+       1       No         EQENV       30.DSL+EQY+0.3EQX+       1       No         EQENV       32.DSL+EQY+0.3EQX+       1       No         EQENV       33.DSL+EQY-0.3EQX+       1       No         EQENV       33.DSL+EQY-0.3EQX+       1       No         EQENV       35.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+ <td< td=""><td>EQENV</td><td>18.DSL+EQX0.3EQY-</td><td>1</td><td></td><td>No</td></td<>	EQENV	18.DSL+EQX0.3EQY-	1		No
EQENV       21.DSL+EQY+0.3EQX-       1       No         EQENV       22.DSL+EQY-0.3EQX       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       24.DSL+EQY-0.3EQX-       1       No         EQENV       25.DSL+EQY+0.3EQX-       1       No         EQENV       26.DSL+EQY+0.3EQX-       1       No         EQENV       26.DSL+EQY+0.3EQX-       1       No         EQENV       27.DSL+EQY+0.3EQX-       1       No         EQENV       28.DSL+EQY+0.3EQX-       1       No         EQENV       29.DSL+EQY+0.3EQX-       1       No         EQENV       29.DSL+EQY+0.3EQX-       1       No         EQENV       30.DSL+EQY+0.3EQX-       1       No         EQENV       31.DSL+EQY+0.3EQX-       1       No         EQENV       32.DSL+EQY+0.3EQX-       1       No         EQENV       33.DSL+EQY-0.3EQX-       1       No         EQENV       34.DSL+EQY-0.3EQX-       1       No         EQENV       36.DSL+EQY-0.3EQX-       1       No         EQENV       36.DSL+EQY-0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1 <td>EQENV       21.DSL+EQY+0.3EQX-       1       No         EQENV       22.DSL+EQY-0.3EQX       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       24.DSL+EQY-0.3EQX+       1       No         EQENV       25.DSL+EQY+0.3EQX-       1       No         EQENV       25.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       27.DSL+EQY+0.3EQX-       1       No         EQENV       28.DSL+EQY+0.3EQX+       1       No         EQENV       29.DSL+EQY+0.3EQX+       1       No         EQENV       29.DSL+EQY+0.3EQX+       1       No         EQENV       30.DSL+EQY+0.3EQX+       1       No         EQENV       31.DSL+EQY+0.3EQX+       1       No         EQENV       32.DSL+EQY+0.3EQX+       1       No         EQENV       33.DSL+EQY-0.3EQX+       1       No         EQENV       35.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+       1       No         EQENV       DL+SDL+0.3LL       1<td>EQENV</td><td>19.DSL+EQY+0.3EQX</td><td>1</td><td></td><td>No</td></td>	EQENV       21.DSL+EQY+0.3EQX-       1       No         EQENV       22.DSL+EQY-0.3EQX       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       24.DSL+EQY-0.3EQX+       1       No         EQENV       25.DSL+EQY+0.3EQX-       1       No         EQENV       25.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       27.DSL+EQY+0.3EQX-       1       No         EQENV       28.DSL+EQY+0.3EQX+       1       No         EQENV       29.DSL+EQY+0.3EQX+       1       No         EQENV       29.DSL+EQY+0.3EQX+       1       No         EQENV       30.DSL+EQY+0.3EQX+       1       No         EQENV       31.DSL+EQY+0.3EQX+       1       No         EQENV       32.DSL+EQY+0.3EQX+       1       No         EQENV       33.DSL+EQY-0.3EQX+       1       No         EQENV       35.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+       1       No         EQENV       DL+SDL+0.3LL       1 <td>EQENV</td> <td>19.DSL+EQY+0.3EQX</td> <td>1</td> <td></td> <td>No</td>	EQENV	19.DSL+EQY+0.3EQX	1		No
EQENV       22.DSL+EQY-0.3EQX       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       24.DSL+EQY-0.3EQX-       1       No         EQENV       25.DSL+EQY++0.3EQX       1       No         EQENV       26.DSL+EQY++0.3EQX+       1       No         EQENV       26.DSL+EQY++0.3EQX+       1       No         EQENV       27.DSL+EQY++0.3EQX-       1       No         EQENV       28.DSL+EQY+-0.3EQX+       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       30.DSL+EQY+-0.3EQX+       1       No         EQENV       31.DSL+EQY+-0.3EQX+       1       No         EQENV       32.DSL+EQY0.3EQX+       1       No         EQENV       33.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX+       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV       22.DSL+EQY-0.3EQX       1       No         EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       24.DSL+EQY+0.3EQX-       1       No         EQENV       25.DSL+EQY++0.3EQX-       1       No         EQENV       26.DSL+EQY++0.3EQX-       1       No         EQENV       26.DSL+EQY++0.3EQX-       1       No         EQENV       27.DSL+EQY++0.3EQX-       1       No         EQENV       28.DSL+EQY+-0.3EQX-       1       No         EQENV       29.DSL+EQY+-0.3EQX-       1       No         EQENV       29.DSL+EQY+-0.3EQX-       1       No         EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY+-0.3EQX-       1       No         EQENV       32.DSL+EQY0.3EQX-       1       No         EQENV       33.DSL+EQY0.3EQX-       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV	20.DSL+EQY+0.3EQX+	1		No
EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       24.DSL+EQY-0.3EQX-       1       No         EQENV       25.DSL+EQY+0.3EQX       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       27.DSL+EQY+0.3EQX-       1       No         EQENV       28.DSL+EQY+0.3EQX-       1       No         EQENV       29.DSL+EQY+0.3EQX+       1       No         EQENV       29.DSL+EQY+0.3EQX-       1       No         EQENV       30.DSL+EQY+0.3EQX-       1       No         EQENV       31.DSL+EQY-0.3EQX+       1       No         EQENV       32.DSL+EQY-0.3EQX-       1       No         EQENV       33.DSL+EQY-0.3EQX-       1       No         EQENV       34.DSL+EQY-0.3EQX-       1       No         EQENV       36.DSL+EQY-0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV       23.DSL+EQY-0.3EQX+       1       No         EQENV       24.DSL+EQY-0.3EQX-       1       No         EQENV       25.DSL+EQY+0.3EQX       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       26.DSL+EQY+0.3EQX+       1       No         EQENV       27.DSL+EQY+0.3EQX-       1       No         EQENV       28.DSL+EQY+0.3EQX-       1       No         EQENV       29.DSL+EQY+0.3EQX+       1       No         EQENV       29.DSL+EQY+0.3EQX-       1       No         EQENV       30.DSL+EQY+0.3EQX-       1       No         EQENV       31.DSL+EQY+0.3EQX-       1       No         EQENV       32.DSL+EQY-0.3EQX-       1       No         EQENV       33.DSL+EQY-0.3EQX-       1       No         EQENV       35.DSL+EQY-0.3EQX-       1       No         EQENV       36.DSL+EQY-0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV	21.DSL+EQY+0.3EQX-	1		No
EQENV       24.DSL+EQY-0.3EQX-       1       No         EQENV       25.DSL+EQY++0.3EQX       1       No         EQENV       26.DSL+EQY++0.3EQX+       1       No         EQENV       27.DSL+EQY++0.3EQX-       1       No         EQENV       27.DSL+EQY+-0.3EQX+       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       30.DSL+EQY+-0.3EQX+       1       No         EQENV       31.DSL+EQY+-0.3EQX+       1       No         EQENV       32.DSL+EQY+-0.3EQX+       1       No         EQENV       32.DSL+EQY0.3EQX+       1       No         EQENV       34.DSL+EQY0.3EQX+       1       No         EQENV       35.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX+       1       No	EQENV       24.DSL+EQY-0.3EQX-       1       No         EQENV       25.DSL+EQY++0.3EQX       1       No         EQENV       26.DSL+EQY++0.3EQX+       1       No         EQENV       27.DSL+EQY++0.3EQX-       1       No         EQENV       27.DSL+EQY+-0.3EQX-       1       No         EQENV       29.DSL+EQY+-0.3EQX-       1       No         EQENV       29.DSL+EQY+-0.3EQX-       1       No         EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       32.DSL+EQY+0.3EQX-       1       No         EQENV       32.DSL+EQY+0.3EQX-       1       No         EQENV       32.DSL+EQY-0.3EQX-       1       No         EQENV       34.DSL+EQY-0.3EQX-       1       No         EQENV       36.DSL+EQY-0.3EQX-       1       No         EQENV       36.DSL+EQY-0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV	22.DSL+EQY-0.3EQX	1		No
EQENV       25.DSL+EQY++0.3EQX       1       No         EQENV       26.DSL+EQY++0.3EQX+       1       No         EQENV       27.DSL+EQY++0.3EQX-       1       No         EQENV       28.DSL+EQY+-0.3EQX       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       30.DSL+EQY+-0.3EQX+       1       No         EQENV       31.DSL+EQY+-0.3EQX+       1       No         EQENV       32.DSL+EQY+-0.3EQX+       1       No         EQENV       32.DSL+EQY+-0.3EQX+       1       No         EQENV       32.DSL+EQY0.3EQX+       1       No         EQENV       33.DSL+EQY0.3EQX+       1       No         EQENV       34.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV       25.DSL+EQY++0.3EQX       1       No         EQENV       26.DSL+EQY++0.3EQX+       1       No         EQENV       27.DSL+EQY++0.3EQX-       1       No         EQENV       28.DSL+EQY+-0.3EQX+       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY+-0.3EQX+       1       No         EQENV       32.DSL+EQY+-0.3EQX+       1       No         EQENV       33.DSL+EQY0.3EQX+       1       No         EQENV       34.DSL+EQY0.3EQX+       1       No         EQENV       34.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX+       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV	23.DSL+EQY-0.3EQX+	1		No
EQENV       26.DSL+EQY++0.3EQX+       1       No         EQENV       27.DSL+EQY++0.3EQX-       1       No         EQENV       28.DSL+EQY+-0.3EQX       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       30.DSL+EQY+-0.3EQX+       1       No         EQENV       31.DSL+EQY-+0.3EQX+       1       No         EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       33.DSL+EQY0.3EQX+       1       No         EQENV       33.DSL+EQY0.3EQX+       1       No         EQENV       35.DSL+EQY0.3EQX+       1       No         EQENV       35.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV       26 DSL+EQY++0.3EQX+       1       No         EQENV       27.DSL+EQY++0.3EQX-       1       No         EQENV       28.DSL+EQY+-0.3EQX       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY+-0.3EQX-       1       No         EQENV       32.DSL+EQY+-0.3EQX+       1       No         EQENV       32.DSL+EQY-+0.3EQX-       1       No         EQENV       32.DSL+EQY-+0.3EQX-       1       No         EQENV       33.DSL+EQY0.3EQX-       1       No         EQENV       34.DSL+EQY0.3EQX-       1       No         EQENV       35.DSL+EQY0.3EQX-       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV	24.DSL+EQY-0.3EQX-	1		No
EQENV       27.DSL+EQY++0.3EQX-       1       No         EQENV       28.DSL+EQY+-0.3EQX+       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY+-0.3EQX-       1       No         EQENV       32.DSL+EQY+-0.3EQX-       1       No         EQENV       32.DSL+EQY0.3EQX-       1       No         EQENV       33.DSL+EQY0.3EQX-       1       No         EQENV       34.DSL+EQY0.3EQX-       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       36.DSL+EQY-0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV       27.DSL+EQY++0.3EQX-       1       No         EQENV       28.DSL+EQY+-0.3EQX+       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY+-0.3EQX-       1       No         EQENV       32.DSL+EQY+-0.3EQX-       1       No         EQENV       32.DSL+EQY0.3EQX-       1       No         EQENV       33.DSL+EQY0.3EQX-       1       No         EQENV       34.DSL+EQY0.3EQX-       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV	25.DSL+EQY++0.3EQX	1		No
EQENV       28.DSL+EQY+-0.3EQX       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY+-0.3EQX+       1       No         EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       33.DSL+EQY0.3EQX-       1       No         EQENV       34.DSL+EQY0.3EQX+       1       No         EQENV       35.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV       28.DSL+EQY+-0.3EQX       1       No         EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY+-0.3EQX+       1       No         EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       33.DSL+EQY0.3EQX-       1       No         EQENV       34.DSL+EQY0.3EQX+       1       No         EQENV       35.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV	26.DSL+EQY++0.3EQX+	1		No
EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY+-0.3EQX       1       No         EQENV       32.DSL+EQY+-0.3EQX+       1       No         EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       33.DSL+EQY0.3EQX-       1       No         EQENV       34.DSL+EQY0.3EQX+       1       No         EQENV       35.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV       29.DSL+EQY+-0.3EQX+       1       No         EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY+-0.3EQX       1       No         EQENV       32.DSL+EQY+-0.3EQX+       1       No         EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       33.DSL+EQY0.3EQX-       1       No         EQENV       34.DSL+EQY0.3EQX+       1       No         EQENV       35.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No					
EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY-+0.3EQX       1       No         EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       33.DSL+EQY-+0.3EQX-       1       No         EQENV       34.DSL+EQY0.3EQX       1       No         EQENV       35.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       36.DSL+EQY0.3EQX+       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV       30.DSL+EQY+-0.3EQX-       1       No         EQENV       31.DSL+EQY-+0.3EQX       1       No         EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       33.DSL+EQY-+0.3EQX-       1       No         EQENV       34.DSL+EQY0.3EQX       1       No         EQENV       35.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       36.DSL+EQY0.3EQX+       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV	28.DSL+EQY+-0.3EQX	1		No
EQENV       31.DSL+EQY-+0.3EQX       1       No         EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       33.DSL+EQY-+0.3EQX-       1       No         EQENV       34.DSL+EQY0.3EQX       1       No         EQENV       35.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV       31.DSL+EQY+0.3EQX       1       No         EQENV       32.DSL+EQY+0.3EQX+       1       No         EQENV       33.DSL+EQY-0.3EQX-       1       No         EQENV       34.DSL+EQY-0.3EQX       1       No         EQENV       35.DSL+EQY-0.3EQX+       1       No         EQENV       36.DSL+EQY-0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No		29.DSL+EQY+-0.3EQX+		+	No
EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       33.DSL+EQY-+0.3EQX-       1       No         EQENV       34.DSL+EQY0.3EQX       1       No         EQENV       35.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No	EQENV       32.DSL+EQY-+0.3EQX+       1       No         EQENV       33.DSL+EQY-+0.3EQX-       1       No         EQENV       34.DSL+EQY0.3EQX       1       No         EQENV       35.DSL+EQY0.3EQX+       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       36.DSL+EQY0.3EQX-       1       No         EQENV       DL+SDL+0.3LL       1       No			1	X	No
EQENV33.DSL+EQY-+0.3EQX- 11NoEQENV34.DSL+EQY0.3EQX1NoEQENV35.DSL+EQY0.3EQX+1NoEQENV36.DSL+EQY0.3EQX-1NoEQENVDL+SDL+0.3LL1No	EQENV33.DSL+EQY-+0.3EQX- 11NoEQENV34.DSL+EQY0.3EQX1NoEQENV35.DSL+EQY0.3EQX+1NoEQENV36.DSL+EQY0.3EQX-1NoEQENVDL+SDL+0.3LL1No		and the second		2	No
EQENV34.DSL+EQY0.3EQX1NoEQENV35.DSL+EQY0.3EQX+1NoEQENV36.DSL+EQY0.3EQX-1NoEQENVDL+SDL+0.3LL1No	EQENV34.DSL+EQY0.3EQX1NoEQENV35.DSL+EQY0.3EQX+1NoEQENV36.DSL+EQY0.3EQX-1NoEQENVDL+SDL+0.3LL1No		32.DSL+EQY-+0.3EQX+	1	$\mathbf{C}$	No
EQENV         35.DSL+EQY0.3EQX+         1         No           EQENV         36.DSL+EQY0.3EQX-         1         No           EQENV         DL+SDL+0.3LL         1         No	EQENV         35.DSL+EQY0.3EQX+         1         No           EQENV         36.DSL+EQY0.3EQX-         1         No           EQENV         DL+SDL+0.3LL         1         No			1		No
EQENV 36.DSL+EQY0.3EQX-1 No EQENV DL+SDL+0.3LL 1 No	EQENV 36.DSL+EQY0.3EQX-1 No EQENV DL+SDL+0.3LL 1 No	 EQENV	34.DSL+EQY0.3EQX	1		No
EQENV DL+SDL+0.3LL 1 No	EQENV DL+SDL+0.3LL 1 No	 		1		No
Official	Official	EQENV	36.DSL+EQY0.3EQX-	1		No
	eduno		CIV.			

#### Table 4.12 - Load Combinations (continued)

M/34

					Office: Computed:	1	5/201
					Check:	1	/
IIIII	1	1111			-		1
	MODAL	RESPON		EQUIVALENT	STATS	T.C.	
	Compi	4RESON	OF RES	ULTS			0
						9	51
Equir	alent .	fatic a	adysis	gives more	. co	reama	Pina
	- /		( do	A A A A.	spons		1 .

4527/5358 WN - Model Response

Sta Equ ale

Method adopted for obtaining



	Mode	Z V.	3.0 - For	- MOD	AL R	ESPON	SE
Load Case/Com	Location	P	vx	VY	Ť	МХ	MY
EQENV	Bottom	278	217	513	18756	3240	-6857

Story5EQENV Min EQENV MaxBottom193-217-513-18752-446-10265Story4EQENV MaxBottom932598967368594442-21474Story4EQENV MinBottom586-598-963-367383768-33735Story3EQENV MaxBottom91960818735157496-9172Story3EQENV MinBottom509-587-401-93423753-25743Story2EQENV MaxBottom276115126761461626307-38984Story2EQENV MaxBottom1809-1499-896-2050614615-71921Story1EQENV MaxBottom101344527535816868091998-242236Story1EQENV MinBottom10055-4527-535816868033868-294167Equent MinBottom10055-4527-535816868033868-294167	Story5EQENV Min EQENV MaxBottom193-217-513-18752-446-10265Story4EQENV MaxBottom932598967368594442-21474Story4EQENV Min MaxBottom586-598-963-367383768-33735Story3EQENV Max MinBottom509-587-401-93423753-25743Story3EQENV Min MaxBottom509-587-401-93423753-25743Story2EQENV Max MaxBottom276115126761461626307-38984Story1EQENV Max MinBottom1809-1499-896-2050614615-71921Story1EQENV Max MinBottom10055-4527-535816868033868-294167EQENV Min MinBottom10055-4527-535816868033868-294167	Story5EQENV Min EQENV MaxBottom193-217-513-18752-446-10265Story4EQENV MaxBottom932598967368594442-21474Story4EQENV Min MaxBottom586-598-963-367383768-33735Story3EQENV Max MinBottom509-587-401-93423753-25743Story2EQENV Max MinBottom276115126761461626307-38984Story2EQENV Max MaxBottom1809-1499-896-2050614615-71921Story1EQENV Min MinBottom101344527535816868091998-242236Story1EQENV Min MinBottom10055-4527-5358-16868033868-294167		Story5	EQENV Max	Bottom	278	217	513	18756	3240	-6857
Story4EQENV Max EQENV MinBottom932598967368594442-21474Story4EQENV 	Story4EQENV Max EQENV MinBottom932598967368594442-21474Story4EQENV MinBottom586-598-963-367383768-33735Story3EQENV Max MinBottom91960818735157496-9172Story3EQENV Min MinBottom509-587-401-93423753-25743Story2EQENV Max MaxBottom276115126761461626307-38984Story2EQENV Min MaxBottom1809-1499-896-2050614615-71921Story1EQENV Min MinBottom101344527535816868091998-242236Story1EQENV MinBottom10055-4527-5358-16868033868-294167	Story4EQENV Max EQENV MinBottom932598967368594442-21474Story4EQENV MinBottom586-598-963-367383768-33735Story3EQENV Max MinBottom91960818735157496-9172Story3EQENV Min MinBottom509-587-401-93423753-25743Story2EQENV Max MaxBottom276115126761461626307-38984Story2EQENV Min MinBottom1809-1499-896-2050614615-71921Story1EQENV Min MinBottom101344527535816868091998-242236Story1EQENV MinBottom10055-4527-5358-16868033868-294167		Story5	EQENV	Bottom	193	-217	-513	-18752	-446	-10265
Story4Min EQENV MaxBottom586-598-963-367383768-33735Story3EQENV MaxBottom91960818735157496-9172Story3EQENV MinBottom509-587-401-9342375325743Story2EQENV MaxBottom276115126761461626307-38984Story2Max MinBottom1809-1499-896-2050614615-71921Story1EQENV Max MaxBottom101344527535816868091998-242236Story1EQENV MinBottom10055-4527-5358-16868033868-294167Equilibrium MinStorkEquilibrium Min10055-4527-5358-16868033868-294167	Story4Min EQENV MaxBottom586-598-963-367383768-33735Story3EQENV Max MinBottom91960818735157496-9172Story3EQENV MinBottom509-587-401-93423753-25743Story2EQENV Max EQENV MinBottom276115126761461626307-38984Story2EQENV MinBottom1809-1499-896-2050614615-71921Story1EQENV Max MinBottom101344527535816868091998-242236Story1EQENV MinBottom10055-4527-5358-16868033868-294167	Story4Min EQENV MaxBottom586-598-963-367383768-33735Story3EQENV Max MinBottom91960818735157496-9172Story3EQENV Max EQENV MaxBottom509-587-401-93423753-25743Story2EQENV Max MinBottom276115126761461626307-38984Story2EQENV Min MinBottom1809-1499-896-2050614615-71921Story1EQENV Max MinBottom101344527535816868091998-242236Story1EQENV MinBottom10055-4527-5358-16868033868-294167		Story4	EQENV	Bottom	932	598	967	36859	4442	-21474
Story3Max EQENV MinBottom91960818735157496-9172Story3EQENV MinBottom509-587-401-93423753-25743Story2EQENV Max MinBottom276115126761461626307-38984Story2EQENV Min MinBottom1809-1499-896-2050614615-71921Story1EQENV Max Max Story1Bottom101344527535816868091998-242236Story1EQENV Min MinBottom10055-4527-5358-16868033868-294167EQENV MinBottom10055-4527-5358-16868033868-294167	Story3Max EQENV MinBottom91960818735157496-9172Story3EQENV MinBottom509-587-401-9342375325743Story2EQENV Max MinBottom276115126761461626307-38984Story2EQENV Min MinBottom1809-1499-896-2050614615-71921Story1EQENV Max Max Story1Bottom101344527535816868091998-242236Story1EQENV Min MinBottom10055-4527-5358-16868033868-294167EQENV MinBottom10055-4527-5358-16868033868-294167	Story3Max EQENV MinBottom91960818735157496-9172Story3EQENV MinBottom509-587-401-9342375325743Story2EQENV Max MinBottom276115126761461626307-38984Story2EQENV Min MinBottom1809-1499-896-2050614615-71921Story1EQENV Max Max Story1Bottom101344527535816868091998-242236Story1EQENV Min MinBottom10055-4527-5358-16868033868-294167EQENV MinBottom10055-4527-5358-16868033868-294167		Story4	EQENV	Bottom	586	-598	-963	-36738	3768	-33735
Story3Min EQENV MaxBottom $509$ $-587$ $-401$ $-9342$ $3753$ $-25743$ Story2 $EQENV$ MaxBottom $2761$ $1512$ $676$ $14616$ $26307$ $-38984$ Story2 $EQENV$ MinBottom $1809$ $-1499$ $-896$ $-20506$ $14615$ $-71921$ Story1 $EQENV$ MaxBottom $10134$ $4527$ $5358$ $168680$ $91998$ $-242236$ Story1 $EQENV$ MinBottom $10055$ $-4527$ $-5358$ $-168680$ $33868$ $-294167$ Equence Functional ActionStarkeBareShear $= 6571 \pm W$	Story3Min EQENV MaxBottom $509$ $-587$ $-401$ $-9342$ $3753$ $-25743$ Story2 $EQENV$ MaxBottom $2761$ $1512$ $676$ $14616$ $26307$ $-38984$ Story2 $EQENV$ MinBottom $1809$ $-1499$ $-896$ $-20506$ $14615$ $-71921$ Story1 $EQENV$ MaxBottom $10134$ $4527$ $5358$ $168680$ $91998$ $-242236$ Story1 $EQENV$ MinBottom $10055$ $-4527$ $-5358$ $-168680$ $33868$ $-294167$ Equence MinStarkeBareShear $= 6571$ $=W$	Story3Min EQENV MaxBottom $509$ $-587$ $-401$ $-9342$ $3753$ $-25743$ Story2 $EQENV$ MaxBottom $2761$ $1512$ $676$ $14616$ $26307$ $-38984$ Story2 $EQENV$ MinBottom $1809$ $-1499$ $-896$ $-20506$ $14615$ $-71921$ Story1 $EQENV$ MaxBottom $10134$ $4527$ $5358$ $168680$ $91998$ $-242236$ Story1 $EQENV$ MinBottom $10055$ $-4527$ $-5358$ $-168680$ $33868$ $-294167$ Equence MinStarkeBareShear $= 6571$ $=W$		Story3		Bottom	919	608	187	3515	7496	-9172
Story2Max EQENV MinBottom $2761$ $1512$ $676$ $14616$ $26307$ $-38984$ Story2EQENV MinBottom $1809$ $-1499$ $-896$ $-20506$ $14615$ $-71921$ Story1EQENV Max MaxBottom $10134$ $4527$ $5358$ $168680$ $91998$ $-242236$ Story1EQENV MinBottom $10055$ $-4527$ $-5358$ $-168680$ $33868$ $-294167$ EquivalentStafic EquivalentBottom $10055$ $-4527$ $-5358$ $-168680$ $33868$ $-294167$	Story2Max EQENV MinBottom $2761$ $1512$ $676$ $14616$ $26307$ $-38984$ Story2EQENV MinBottom $1809$ $-1499$ $-896$ $-20506$ $14615$ $-71921$ Story1EQENV Max MaxBottom $10134$ $4527$ $5358$ $168680$ $91998$ $-242236$ Story1EQENV MinBottom $10055$ $-4527$ $-5358$ $-168680$ $33868$ $-294167$ EquivalentStafic EquivalentBottom $10055$ $-4527$ $-5358$ $-168680$ $33868$ $-294167$	Story2Max EQENV MinBottom $2761$ $1512$ $676$ $14616$ $26307$ $-38984$ Story2EQENV MinBottom $1809$ $-1499$ $-896$ $-20506$ $14615$ $-71921$ Story1EQENV Max MaxBottom $10134$ $4527$ $5358$ $168680$ $91998$ $-242236$ Story1EQENV MinBottom $10055$ $-4527$ $-5358$ $-168680$ $33868$ $-294167$ EquivalentStafic EquivalentBottom $10055$ $-4527$ $-5358$ $-168680$ $33868$ $-294167$		Story3		Bottom	509	-587	-401	-9342	3753	-25743
				Story2		Bottom	2761	1512	676	14616	26307	-38984
Story1 Max Bottom 10134 4527 5358 168680 91998 -242236 Story1 EQENV Min Bottom 10055 -4527 -5358 -168680 33868 -294167 Equivalent Static Bare Shear = 6571 + N	Story1 Max Bottom 10134 4527 5358 168680 91998 -242236 Story1 EQENV Min Bottom 10055 -4527 -5358 -168680 33868 -294167 Equivalent Static Bare Shear = 6571 and	Story1 Max Bottom 10134 4527 5358 168680 91998 -242236 Story1 EQENV Min Bottom 10055 -4527 -5358 -168680 33868 -294167 Equivalent Static Bare Shear = 6571 and		Story2		Bottom	1809	-1499	-896	-20506	14615	-71921
Story1 EQENV Min Bottom 10055 -4527 -5358 -168680 33868 -294167 Equivalent Static Bare Shear = 6571 and	Story1 EQENV Min Bottom 10055 -4527 -5358 -168680 33868 -294167 Equivalent Static Bare Shear = 6571 and	Story1 EQENV Min Bottom 10055 -4527 -5358 -168680 33868 -294167 Equivalent Static Bare Shear = 6571 and		Story1		Bottom	10134	4527	5358	168680	91998	-242236
Equivalent Static Bine Shear = 6571 41	Equivalent Static Bine Shear = 6571 and	Equivalent Static Bine Shear = 6571 and		Story1	EQENV	Bottom	10055	-4527	-5358	-168680	33868	-294167
erthe	nderthe	dunderthe						)(I.				
	nos	duno				, ci	ille.					
sed	S			0	Sec							
leased	lease			6	2500							
Released	Release	Relea	<	2010	2500							
Released under the	Release	Relea		2010	2580							

Story

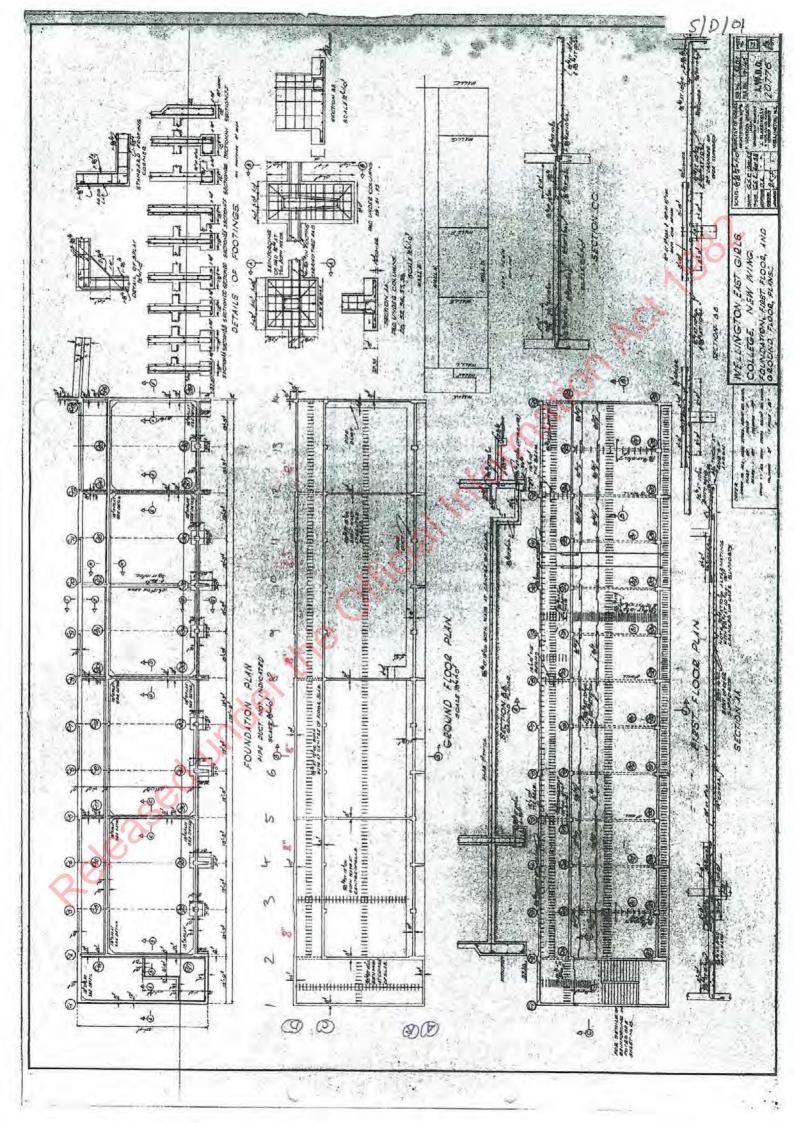
M/35

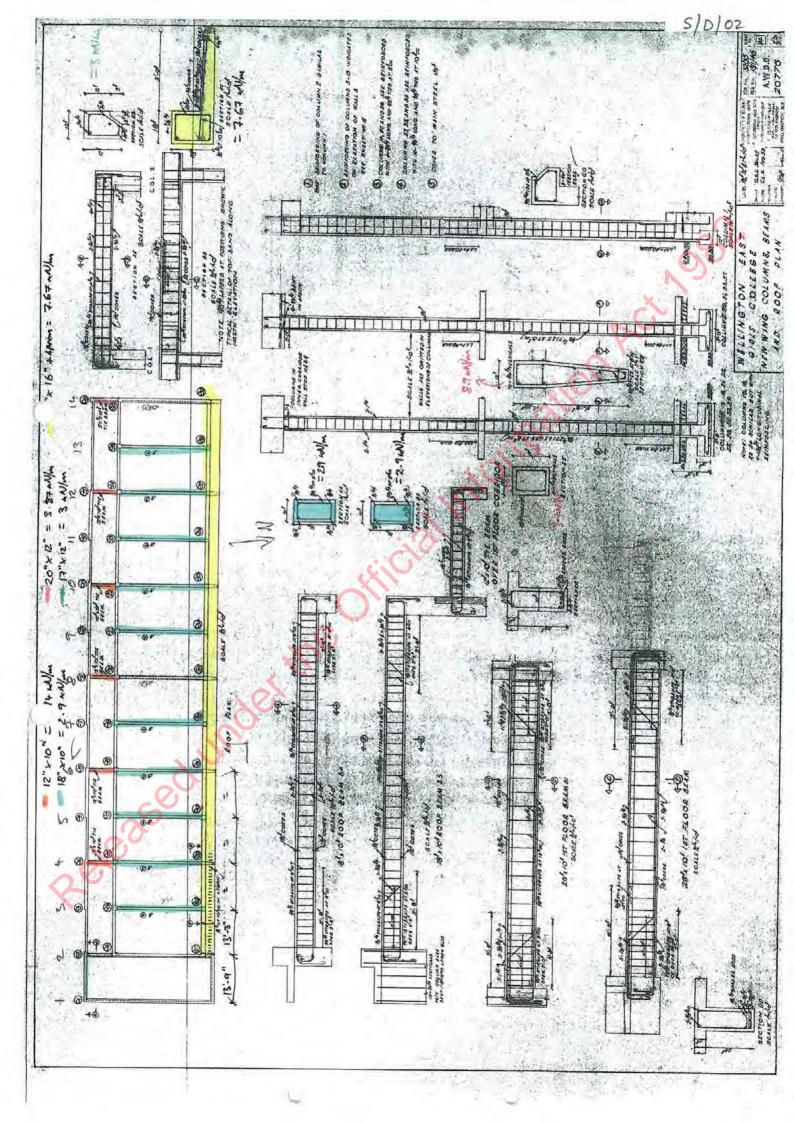
MODEL 2.2 EQUEVALENT STATEC

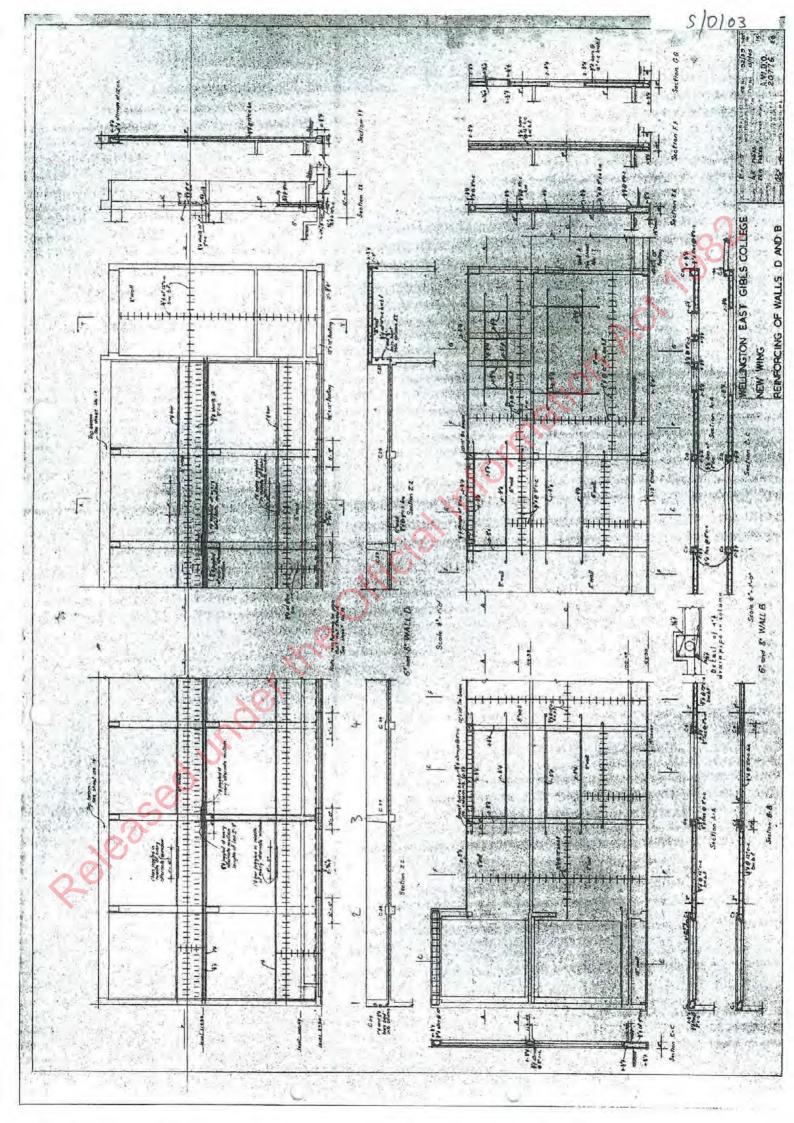
M/36

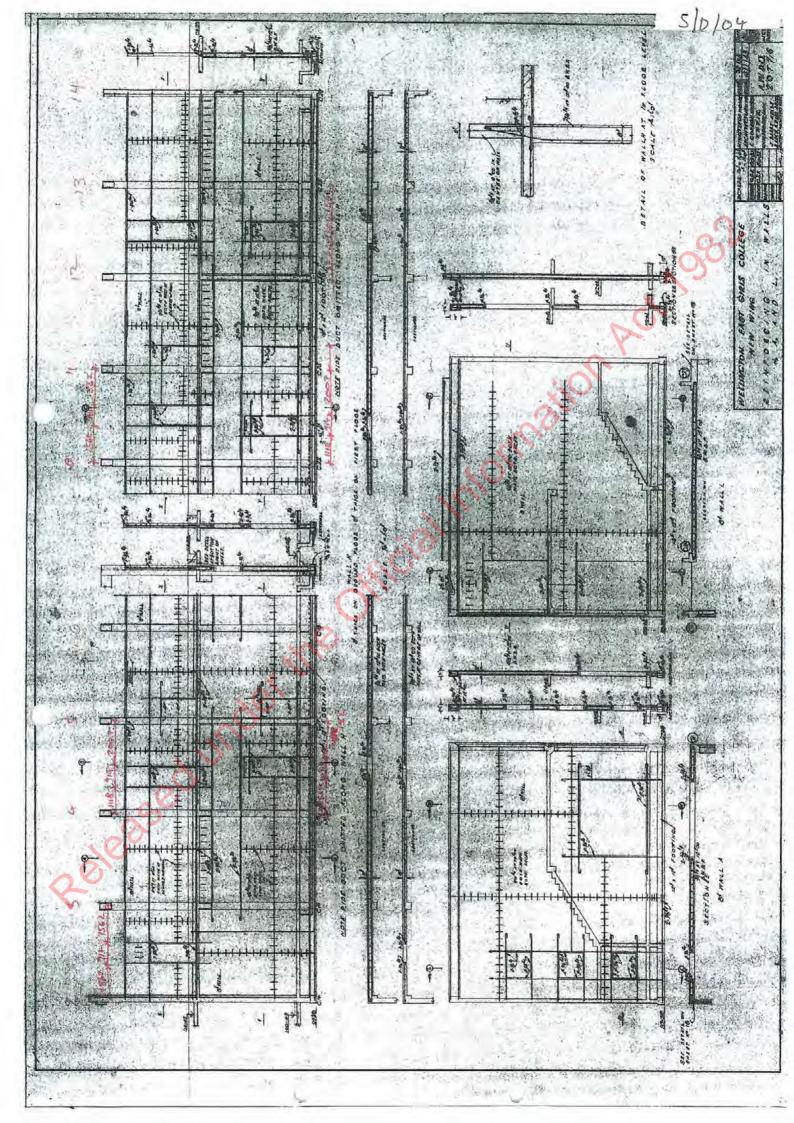
STOREY FORCES

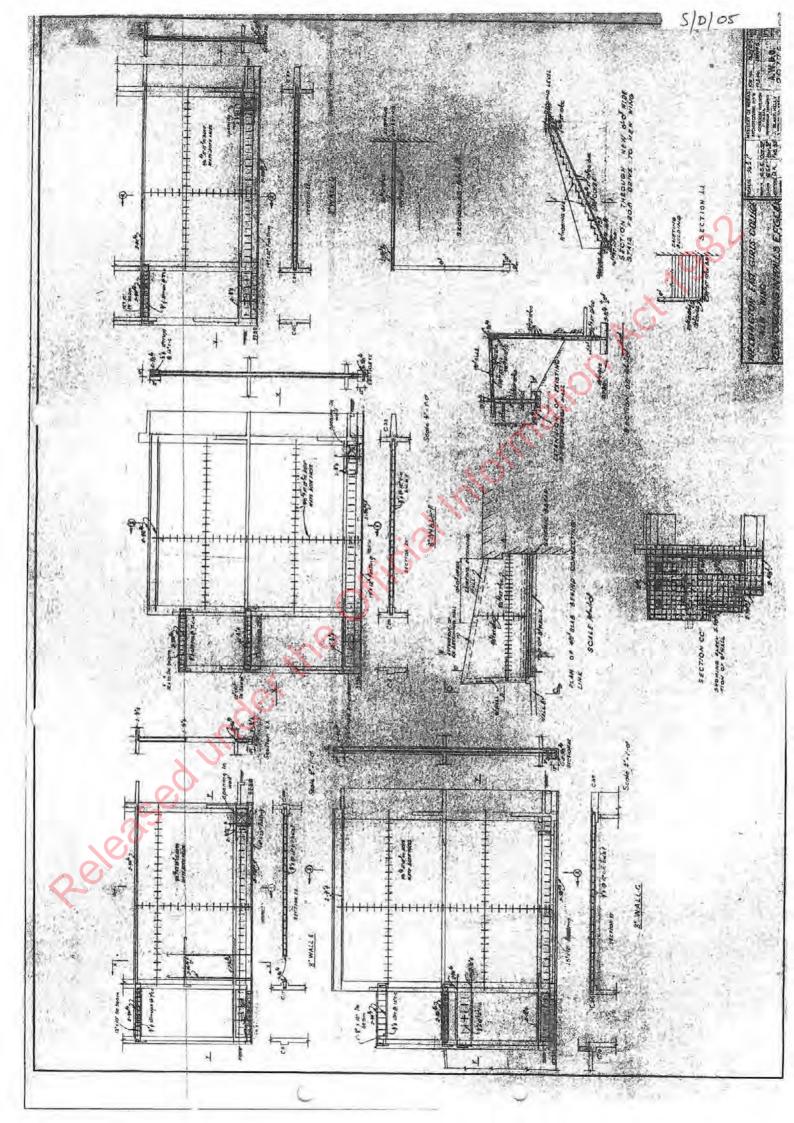
	Story	Load Case/Com	Location	Р	vx	VY	т	MX	MY	
	Story5	EQENV Max	Bottom	294	186	275	10283	4709	-8225	
	Story5	EQENV Min	Bottom	208	-57	-917	-33701	285	-10735	
	Story4	EQENV Max	Bottom	849	166	510	23947	4645	-15011	0
	Story4	EQENV Min	Bottom	413	-549	-1693	-63334	3815	-32615	3
	Story3	EQENV Max	Bottom	1060	292	-34	7075	8609	-1907	
	Story3	EQENV Min	Bottom	343	-925	-489	-11581	2084	-28787	
	Story2	EQENV Max	Bottom	3314	557	138	19114	33053	-36770	
C	Story2	EQENV Min	Bottom	1636	-1843	-1125	-25227	13906	-88702	
	Story1	EQENV Max	Bottom	10111	1971	1971	98752	109423	-254894	
	Story1	EQENV Min	Bottom	10111	-6571	-6571	-198498	48977	-315340	
	20108	sed	mder	the	Hick					

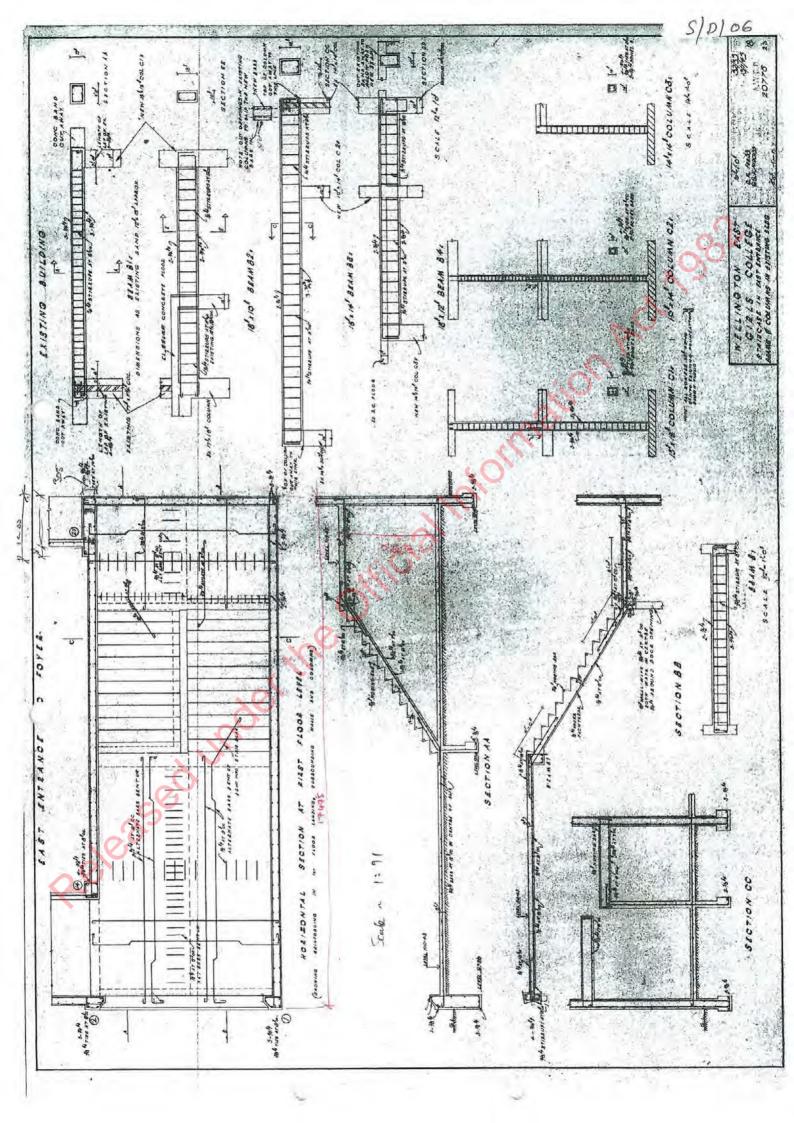

## Model Register

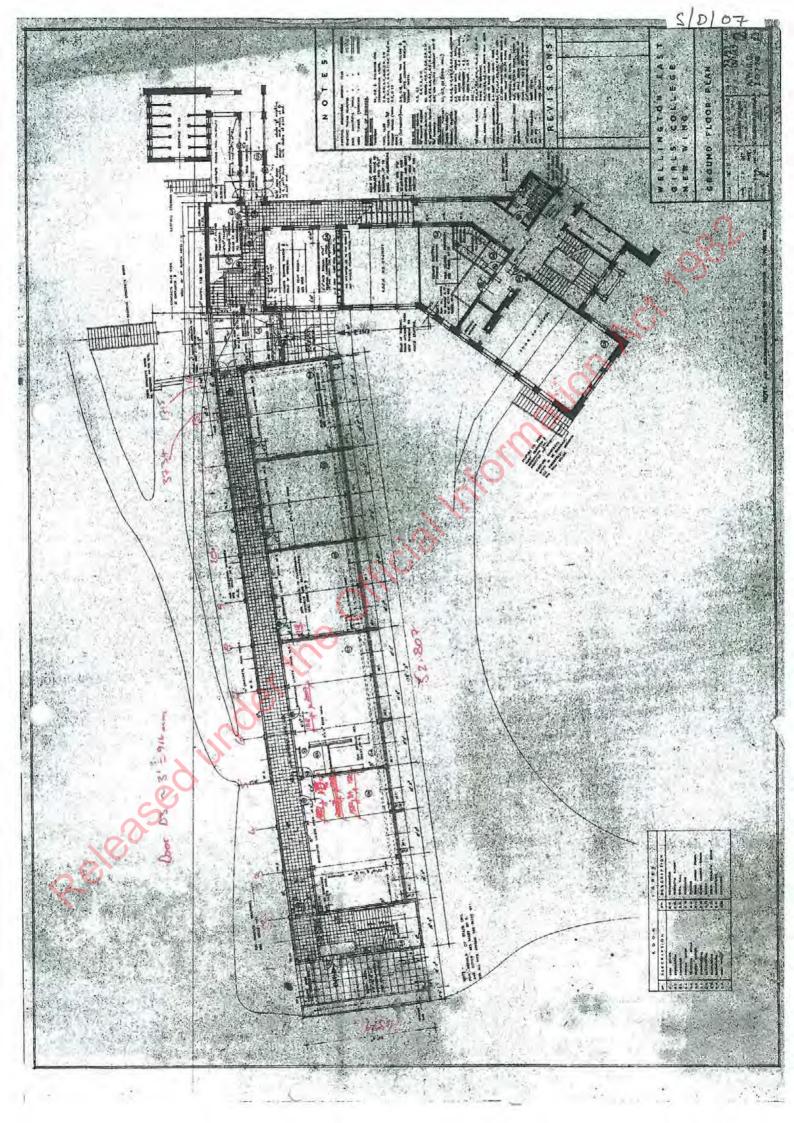

	Developed from	Description
East Block v1.0	N/A	Basic model. No strengthening, no top storey.
East Block v1.1	East Block v1.0	Diaphragms added. Load cases added.
East Block v2.0	East Block v1.1	Top storey added. Roof loads added as UDLs on beams.
East Block v2.1	East Block v2.0	Period specified to 0.4s.
East Block v2.2	East Block v2.1	Disconnected CBF on GLA L1 and L2 by offsetting CBF by 250mm. Top storey roof still connected.
East Block v2.3	East Block v2.2	Wall on GLA:1-2 stiffness reduced so that it won't attract very much in-plane shear. To model effects of it becoming disconnected from the floor diaphragm.
East Block v2.4	East Block v2.2	Vertical braces on GLC removed
East Block v2.5	East Block v2.2	Model v2.2 with mu=2, Sp=0.7 demands
East Block v2.6	East Block v2.2	Model v2.2 with mu=4, Sp=0.7 demands

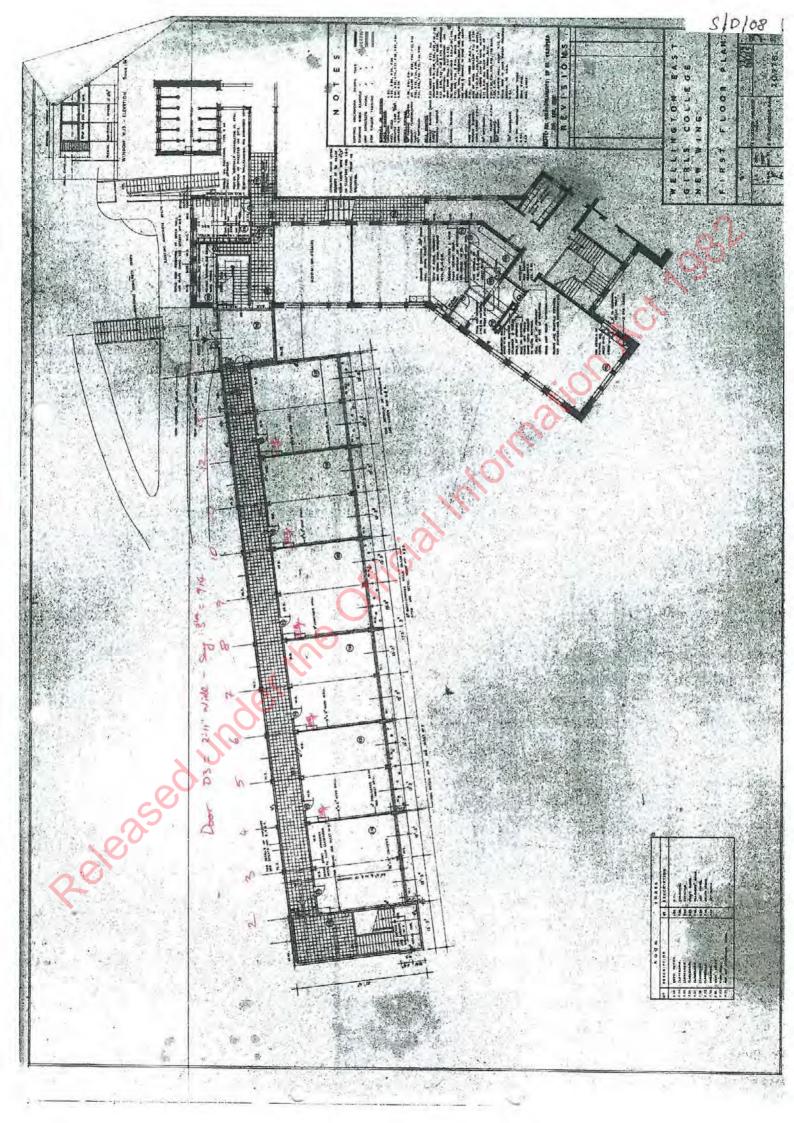

3

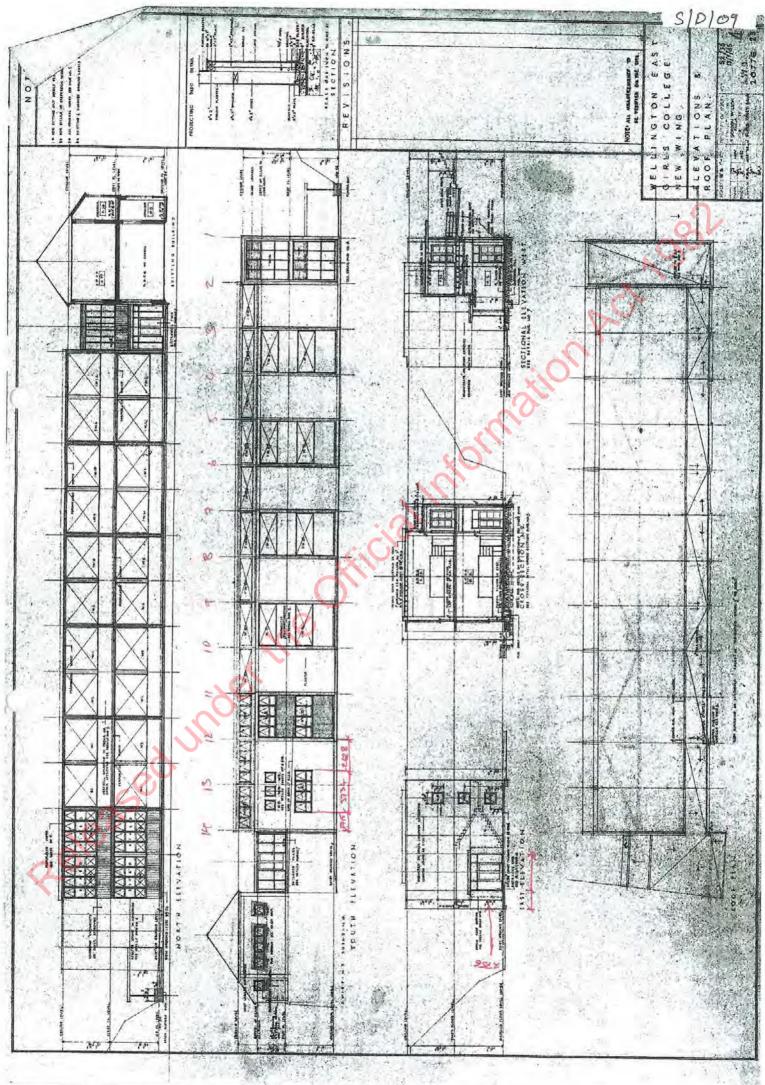

2	East Block v3.0	East Block v2.0	Modal Response Spectrum method. Used to compare to Equivalent Static model.
	, Jr		
	sed		
20	20		
8			


0



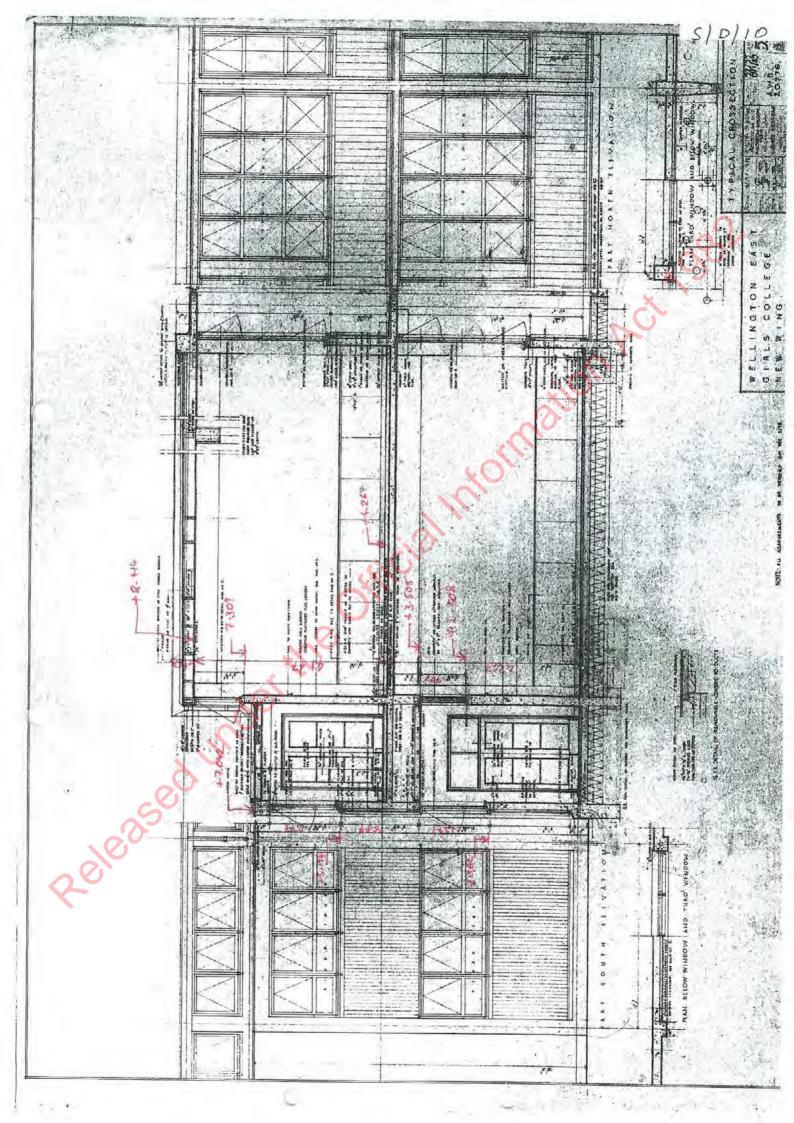



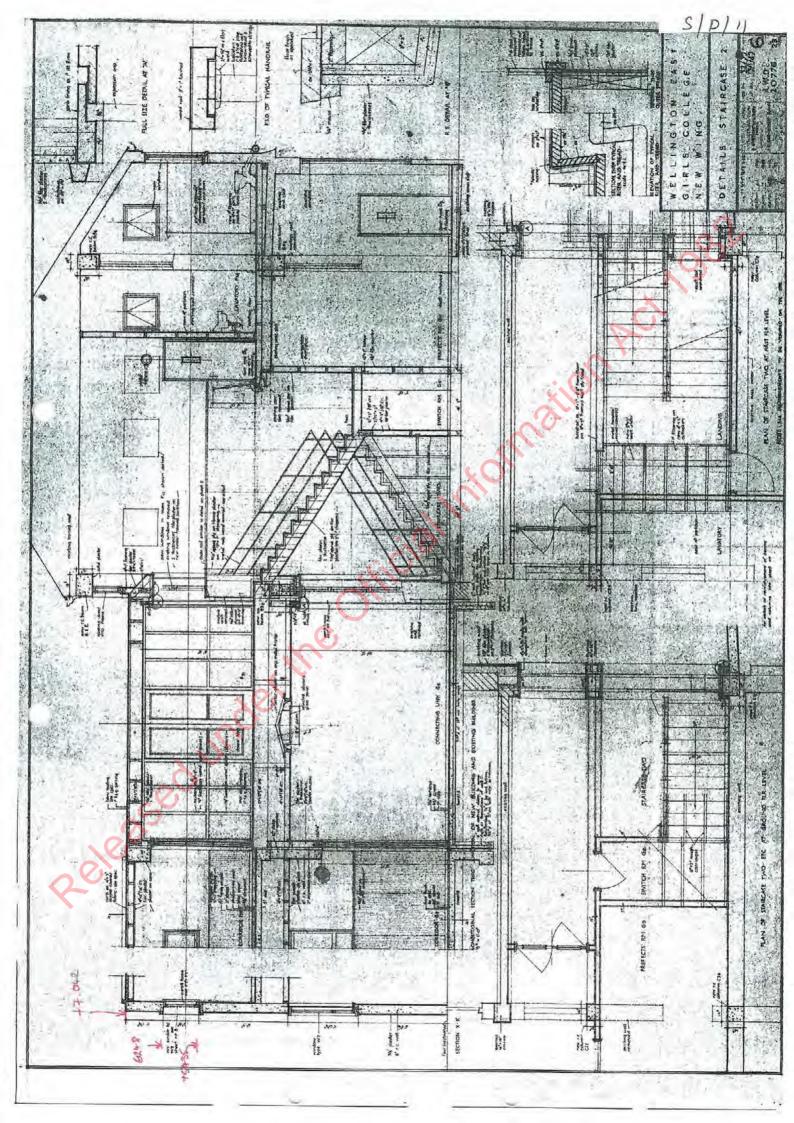



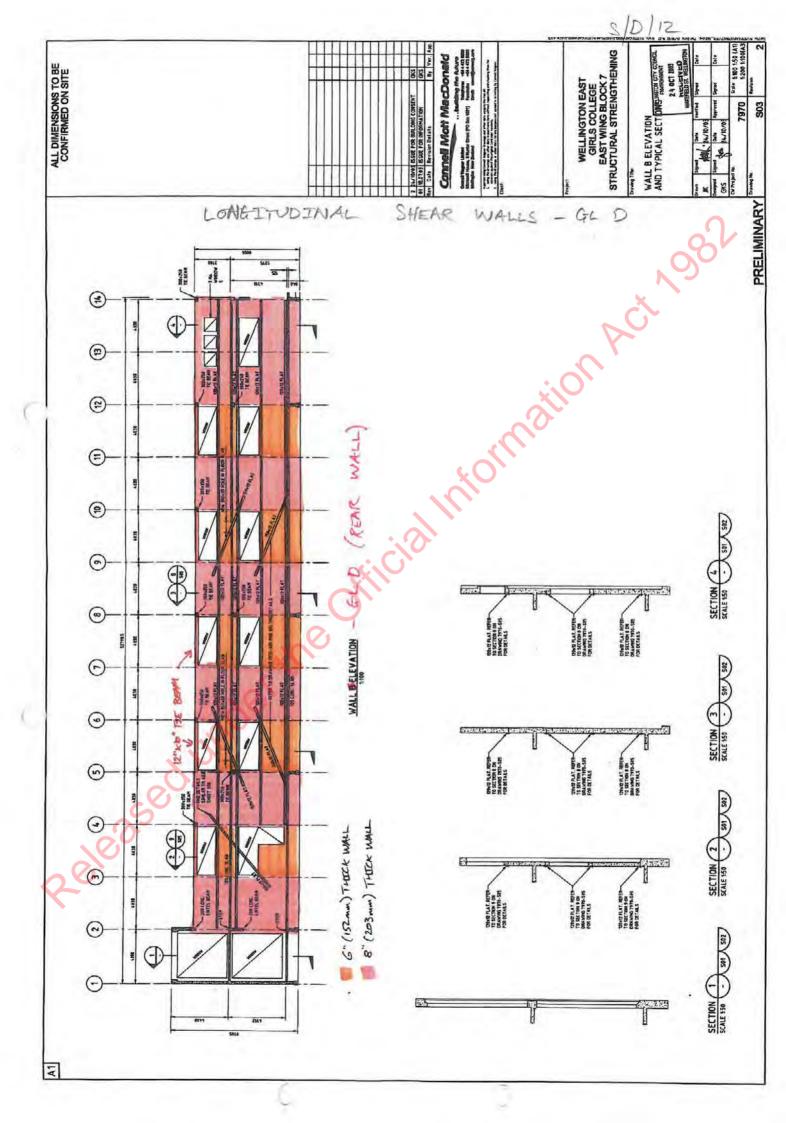



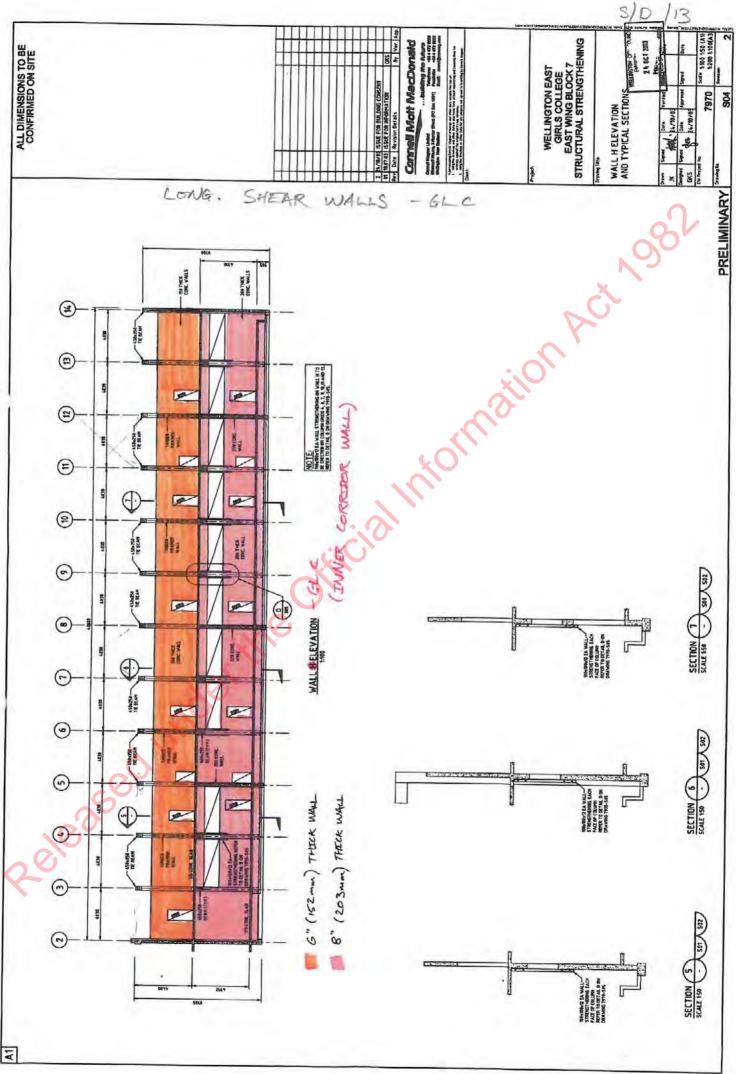






······

3. 3









£

-

ect/Task/File No:	WELFC	EAST	BLOCK	DSA	Sheet No	of
ect Description:					Office:	
					Computed: PM	1016/1012
					Check:	1 1
11111	TTTTTTT					
5	UMMARY	OF	RESULTS	à		
TRAN	s shea	e wa	LLS			al
tround	Floor	>	88%			N
1 54	Floor	7	100%		ر Č	
					NY I	
LONE	TTUDINAL	SHE	AR WAL	LS		
Ground	Floor	>	100 %			
Ist Floo	r	>	100 %	.01		
CE	SF ON	FRONT	ELE	NOTION		
			.0			
Ground	Floor	>	100 1	0		
154 F/eren		>	100 %			
2nd Floo	r	S	~ 70%	- I/ 19	ther X brace ectival. ther X brace	ces becom
	×		>100%	If Ho	ther & brac	es work.
X	BRACES					
					limits their	

Braces & Connections > 75%. 2nd Floor CBF > 70% Il & braces lose attempthy Stiffness. TRANSVERSE PORTAL FRAMES ON 2nd FLOOR

> 100% - LTB man occur but findy low ductility demands -MK2 2nd Floor

OPUS

s/001i **CALCULATION SHEET** Project/Task/File No: WEER EAST BLOCK DSA Sheet No of **Project Description:** Office: Computed: Priol 6/10 12015 Check: 1 1 DIAPHRAGMS 1ST Floor (concrete) > 100 % -Some damage around files corner, but not a life-sofe 2nd Floor (Timber) > 100% ROOF - (Reid braces) > 100% 2nd Floor - Concrete Beams Out of Plane 95% > 18:25

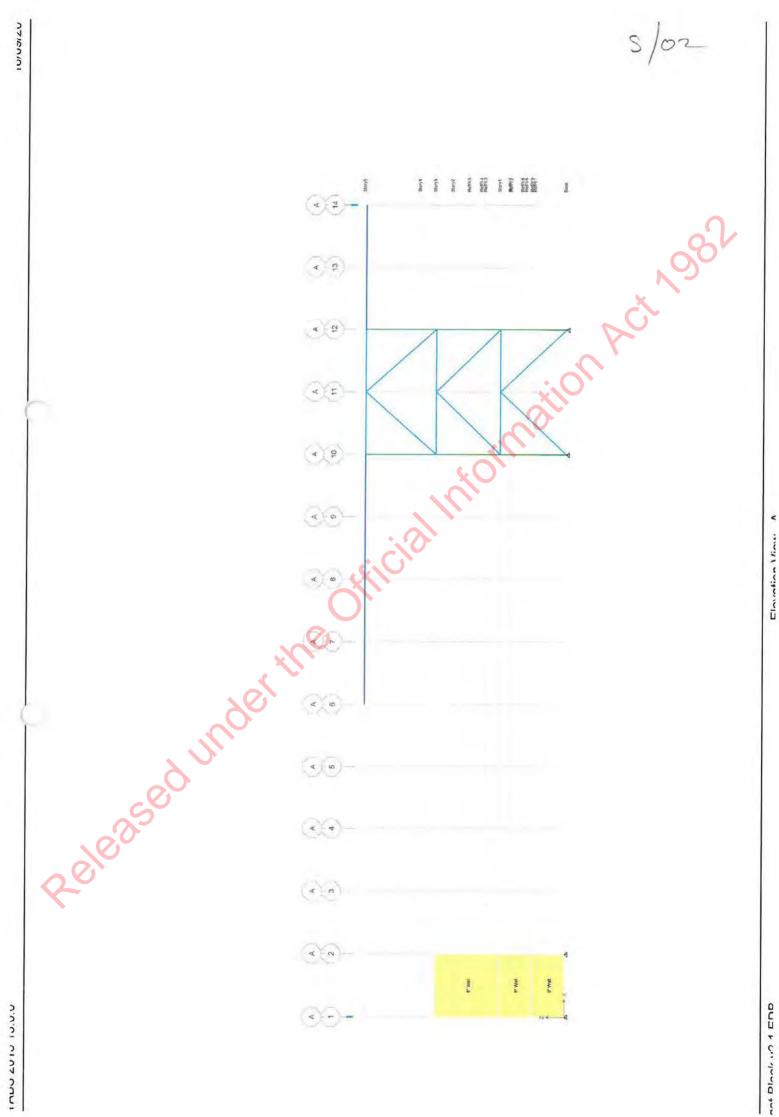


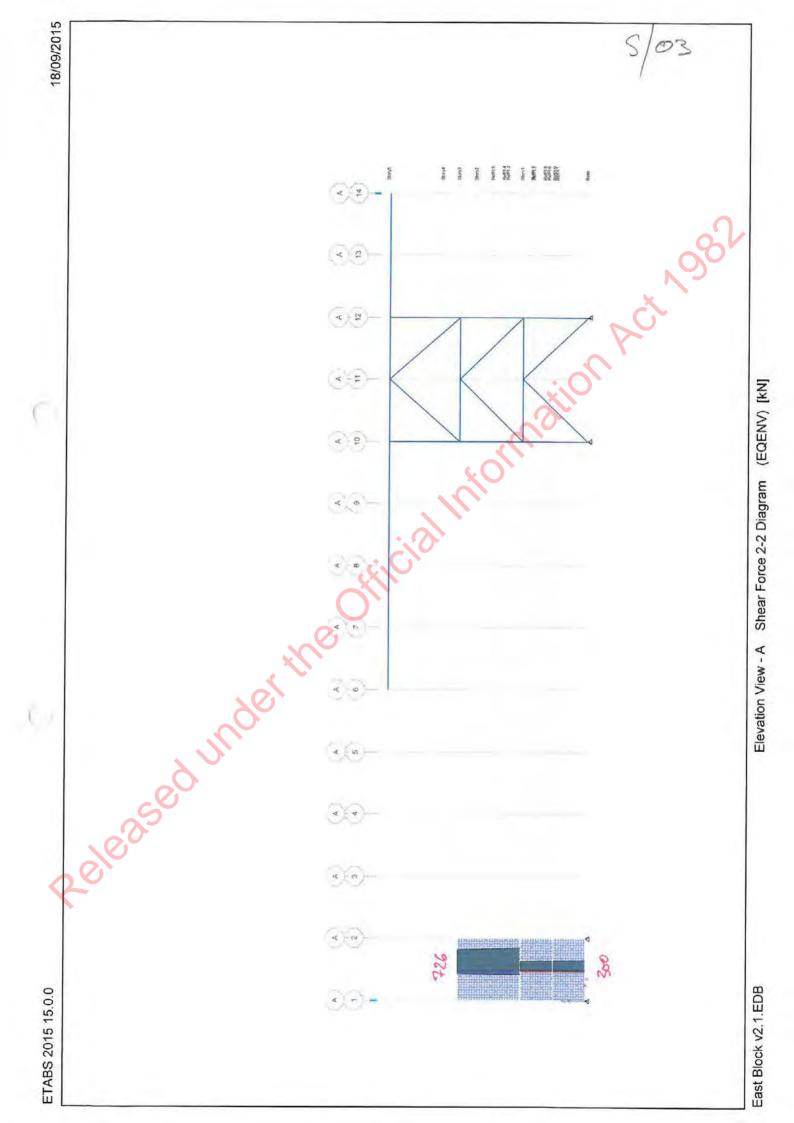
OPUS	Project	Job Ref.						
Opus International Consultants PO Box 12003	Section	Section 8" Thick Wall on GLA						
Wellington 6144	Calc. by PMO	Date 21/09/2015	Chk'd by	Date	App'd by	Date		
Shear Capacity of Concrete	Wall							
Axial compressive load		N = 1 kN						
Shear action		V = 1 kN						
Concrete compressive strength			fc = 30MPa					
Length of wall		L _w = 4.191m						
Wall thickness		t = 203 mm						
		φ = 0.75						
Capacity reduction factor		$\phi = 0.75$			· · · · · · · · · · · · · · · · · · ·			
Capacity reduction factor Area of shear reinforcement wi	thin		m ² (2 layer of	3/8" diameter	bars)			
	thin			3/8" diameter	bars)			
Area of shear reinforcement wi		A _v = 143m s ₂ = 305 m			bars)	•		
Area of shear reinforcement wi a distance		Å _∨ = 143m s₂ = 305 m f <mark>yt = 245M</mark> f	im		bars)			
Area of shear reinforcement wi a distance Yield strength of the shear rein		$A_v = 143m$ $s_2 = 305 m$ $f_{yt} = 245Mf$ $d = 0.8 \times L$	nm <mark>⊃a (33,000 p</mark>	si x 1.08)	bars)			
Area of shear reinforcement wi a distance Yield strength of the shear rein Effective depth of wall		$A_v = 143m$ $s_2 = 305 m$ $f_{yt} = 245MF$ $d = 0.8 \times L$ $A_g = L_w \times t$	nm [⊃] a (33,000 p _w = 3.353m	si x 1.08) 0mm ²	bars)			
Area of shear reinforcement wi a distance Yield strength of the shear rein Effective depth of wall Gross area of section		$A_v = 143m$ $s_2 = 305 m$ $f_{yt} = 245Mf$ $d = 0.8 \times L$ $A_g = L_w \times t$ $A_{cv} = d \times t$	Pa (33,000 p w = 3.353m = 850773.00 = 680618.400	si x 1.08) 0mm ²	n Po	= <b>0.931</b> MPa		
Area of shear reinforcement wi a distance Yield strength of the shear rein Effective depth of wall Gross area of section Shear area		$A_v = 143m$ $s_2 = 305 m$ $f_{yt} = 245MF$ $d = 0.8 \times L$ $A_g = L_w \times t$ $A_{cv} = d \times t$ $v_c = 0.17 \times t$	Pa (33,000 p w = 3.353m = 850773.00 = 680618.400	si x 1.08) 0mm ² 0mm ² ³ ×1 m ^{-0.5} ×1 s ⁻¹ :	bars)	= <b>0.931</b> MP₽		

Minimum Requirements Minimum reinforcement

Probable shear resistance

Max Allowable Shear Stress Shear stress Max nominal shear stress

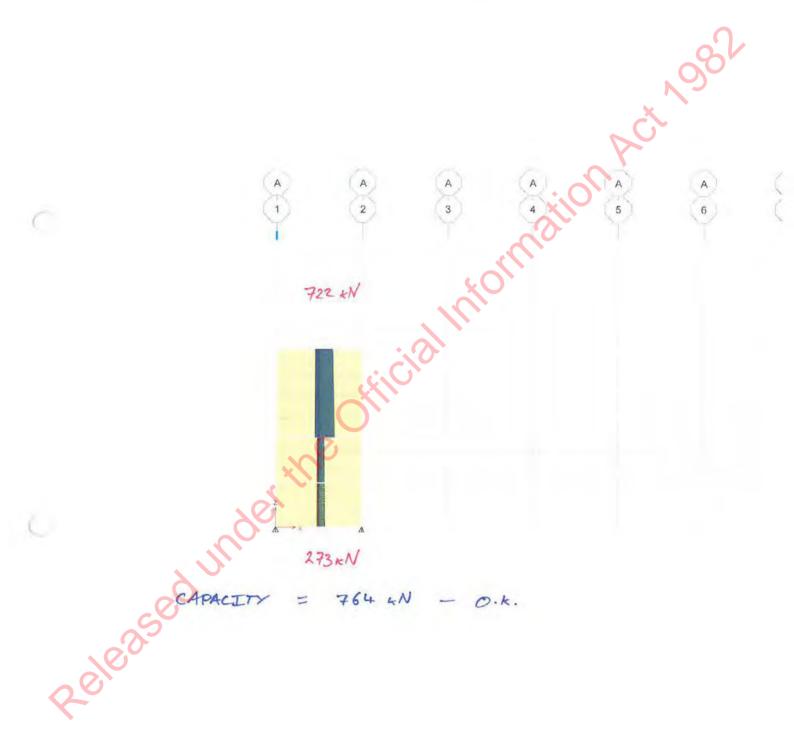

X


5 5 6 5 6 C

 $A_{y,min} = 0.7 \times 1000 \text{kg} / 1 \text{mm} / 1 \text{s}^2 \times t \times \text{s}_2 / f_{yt} = 177 \text{ mm}^2$ 

$$\begin{split} v &= V \ / \ (L_w \times t) = \textbf{0.001} \ \text{MPa} \\ v_{max} &= \min(0.2 \times f_c, 8\text{MPa}) = \textbf{6.000}\text{MPa} \end{split}$$

 $V_p = \phi \times (V_c + V_s) = 764.259 \text{ kN}$ 






5/04







OPUS	Project	Wall Shea	Job Řef. Sheet no./rev. 1			
Opus International Consultants PO Box 12003 Wellington 6144	Section	Typical 6				
	Calc. by PMO	Date 8/09/2015	Chk'd by	Date	App'd by	Date
Shear Capacity of Concrete	Wall -	- GL C:	R GL	D		
Axial compressive load		N = 1 kN				
Axial compressive load Shear action		N = 1 kN V = 1 kN				
그 그렇게 전 영상을 잘 못 들었다. 그는 아이는 것이 같아요.	۱		а			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a distance $s_2 = 229 \text{ mm}$ Yield strength of the shear reinforcement $f_{yt} = 245 \text{MPa} (33,000 \text{ psi x 1.08})$ Effective depth of wall $d = 0.8 \times L_w = 3.474 \text{m}$ Gross area of section $A_g = L_w \times t = 660136.000 \text{mm}^2$ Shear area $A_{cv} = d \times t = 528108.800 \text{mm}^2$ Shear resisted by concrete $v_c = 0.17 \times (\sqrt{(f_c)} \times 1 \text{ kg}^{0.5} \times 1 \text{ m}^{-0.5} \times 1 \text{ s}^{-1} \times 1000 + \text{ N/ } A_g) = 0.931 \text{ MPa}$ Concrete shear strength $V_c = v_c \times A_{cv} = 491.873 \text{ kN}$ 

t = 152 mm $\phi = 0.75$ 

 $V_s = A_v \times f_{yt} \times d / s_2 = 263.918$ kN

 $A_v = 71 \text{mm}^2$  (1 layer of 3/8" diameter bars)

 $V_p = \phi \times (V_c + V_s) = 566.843 \text{ kN}$ 

 $Av_{min} = 0.7 \times 1000 \text{kg} / 1 \text{mm} / 1 \text{s}^2 \times \text{t} \times \text{s}_2 / \text{f}_{yt} = 99 \text{ mm}^2$ 

1

Max Allowable Shear Stress Shear stress Max nominal shear stress

Shear resisted by reinforcement Probable shear resistance

**Minimum Requirements** 

Minimum reinforcement

leased

Wall thickness

Capacity reduction factor

Area of shear reinforcement within

$$\label{eq:var} \begin{split} v &= V \ / \ (L_w \times t) = \textbf{0.002} \ \text{MPa} \\ v_{max} &= \min(0.2 \times f_c, \text{8MPa}) = \textbf{6.000} \text{MPa} \end{split}$$

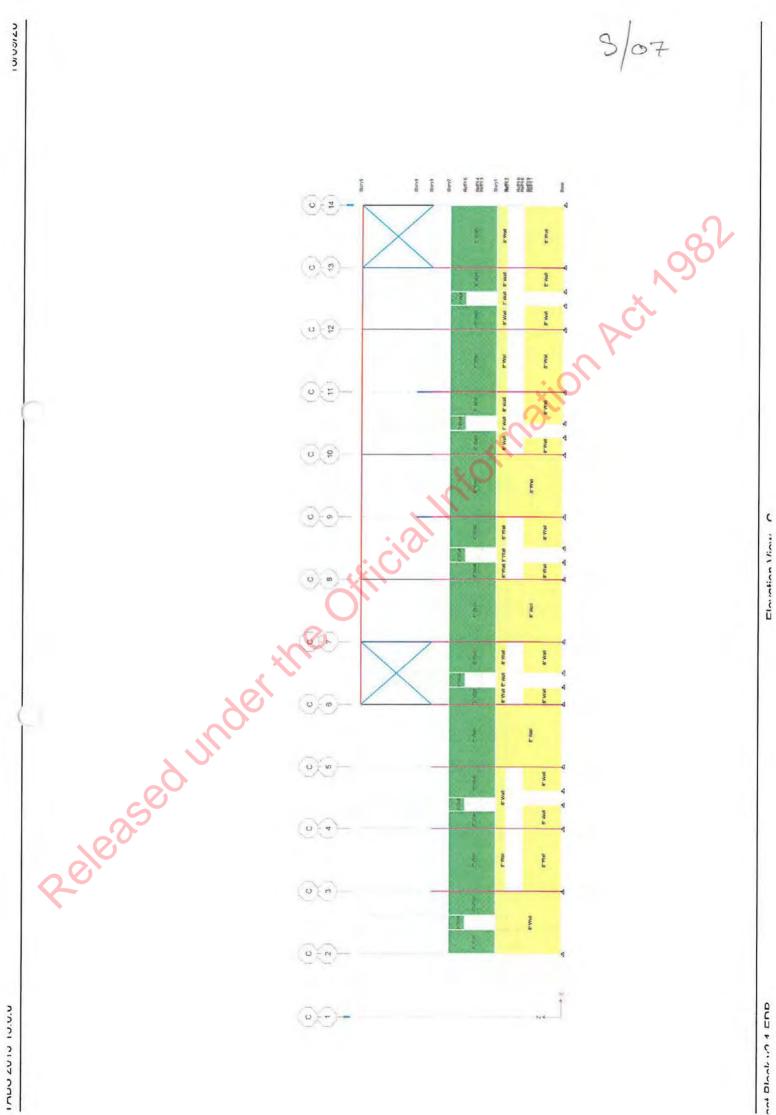
Opus International Consultants	Project	Wall Shea	Job Ref.			
	Section	Typical 8	Sheet no./rev. 1			
Wellington 6144	Calc. by PMO	Date 8/09/2015	Chk'd by	Date	App'd by	Date

cl n

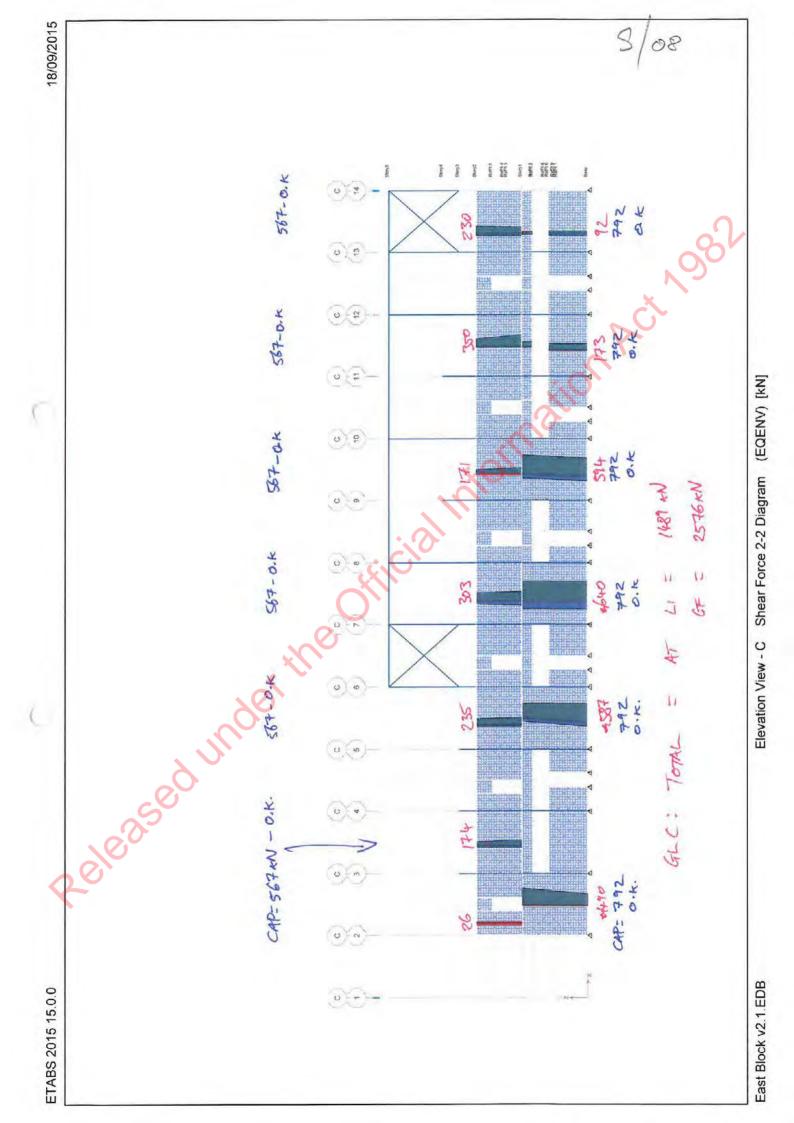
Axial compressive load	N = 1 kN
Shear action	V = 1 kN
Concrete compressive strength	fc = 30MPa
Length of wall	L _w = 4.343m
Wall thickness	t = 203 mm
Capacity reduction factor	φ = 0.75
Area of shear reinforcement within	$A_v = 143 \text{mm}^2$ (2 layer of 3/8" diameter bars)
a distance	s ₂ = 305 mm
Yield strength of the shear reinforcement	f _{yt} = 245MPa(33,000 psi x 1.08)

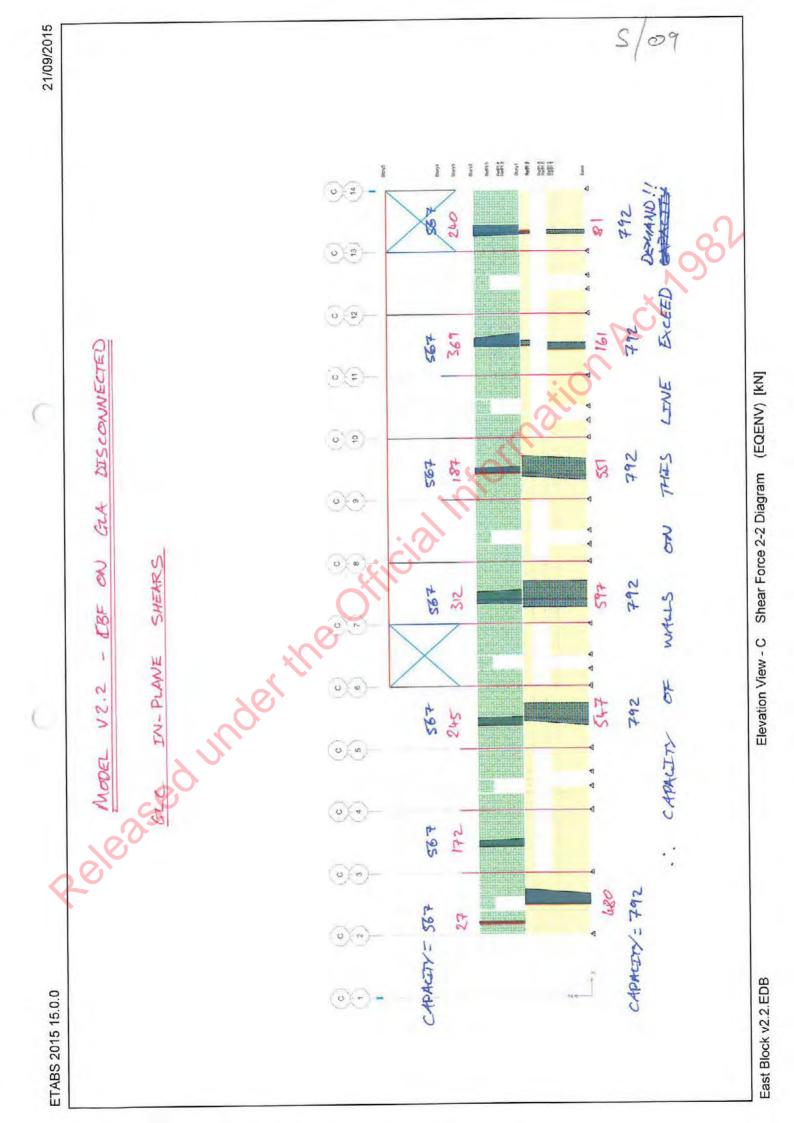
$d = 0.8 \times L_w = 3.474 m$
$A_g = L_w \times t = 881629.000 mm^2$
A _{cv} = d × t = <b>705303.200</b> mm ²
v _c = 0.17 × (√(f _c ) ×1 kg ^{0.5} ×1 m ^{-0.5} ×1 s ⁻¹ × 1000 + N/ A _g ) = <b>0.931</b> MPa
$V_{c} = V_{c} \times A_{cv} = 656.864 \text{ kN}$
$V_{s} = A_{v} \times f_{yt} \times d / s_{2} = 399.100$ kN
$V_{p} = \phi \times (V_{c} + V_{s}) =$ 791.973 kN

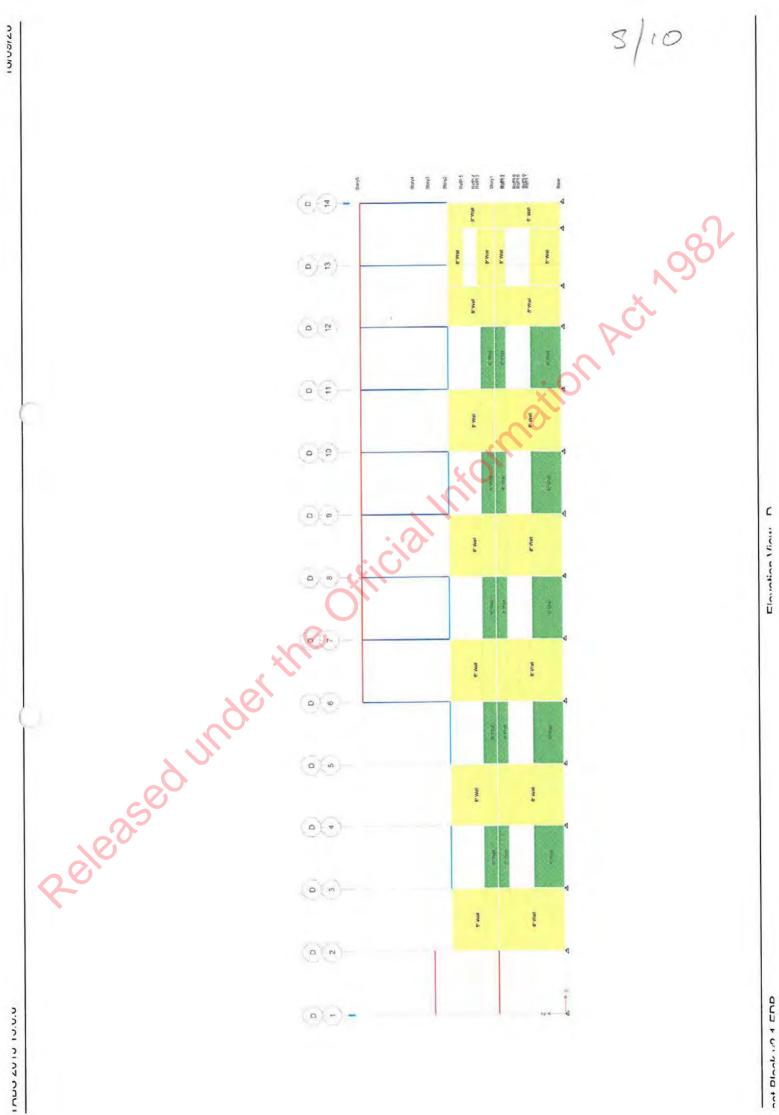
**Minimum Requirements** Minimum reinforcement

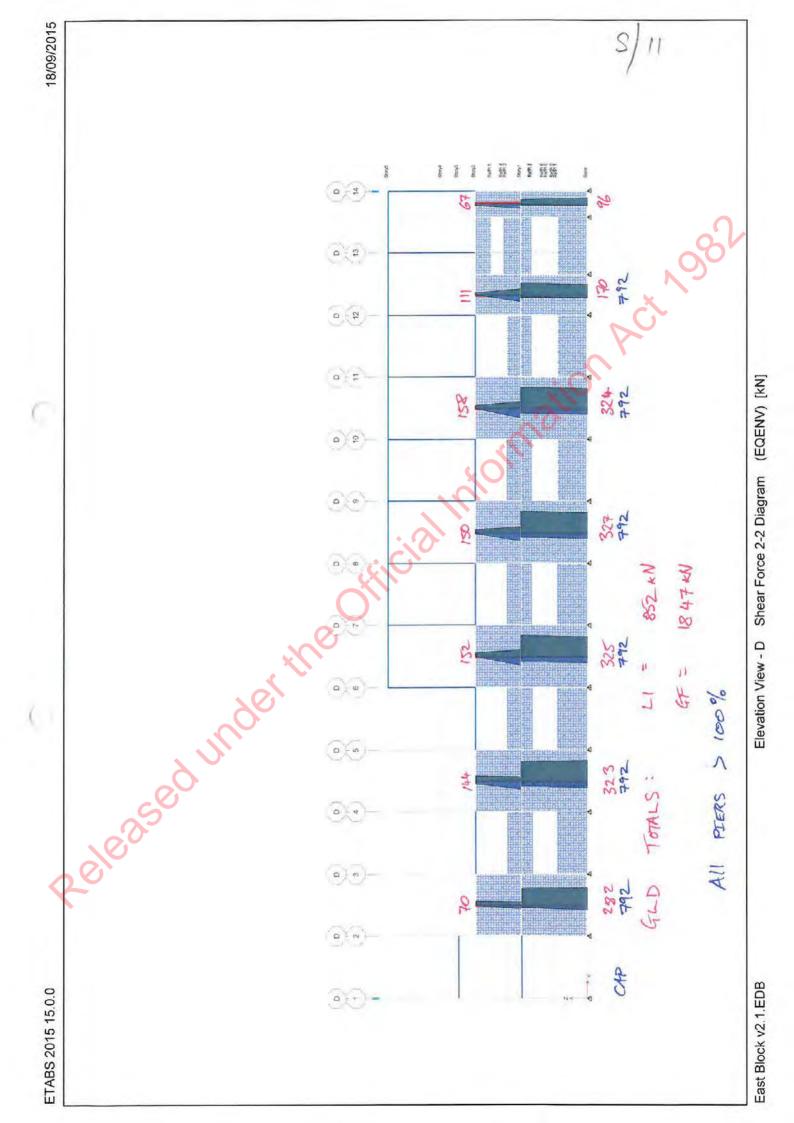

ress rear stress

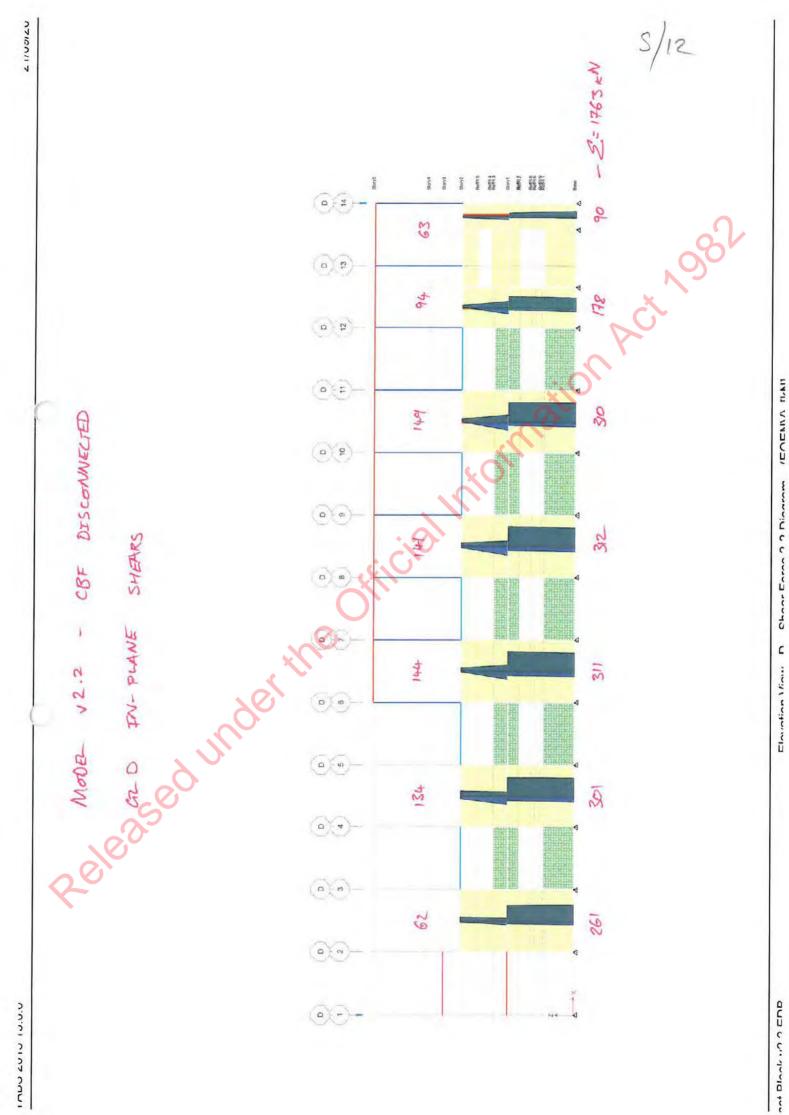
X


 $v = V / (L_w \times t) = 0.001 \text{ MPa}$ 


 $A_{y_{min}} = 0.7 \times 1000$ kg / 1mm / 1s² × t × s₂ / f_{yt} = 177 mm²


 $v_{max} = min(0.2 \times f_c, 8MPa) = 6.000MPa$ 





L











Opus International Consultants PO Box 12003 Wellington 6144	Project	Wall Shea	Job Ref.			
	Section GL1 8" Thick Wall				Sheet no./rev. 1	
	Calc. by PMO	Date 18/09/2015	Chk'd by	Date	App'd by	Date
Shear Capacity of Concrete	Wall					
Axial compressive load		N = 1 kN				
Shear action		V = 1  kN				C
Concrete compressive strength	н	f _c = 30MPa	a			O,
Length of wall		L _w = 11.37	'9m			$\sim$
Wall thickness		t = 203 mr				

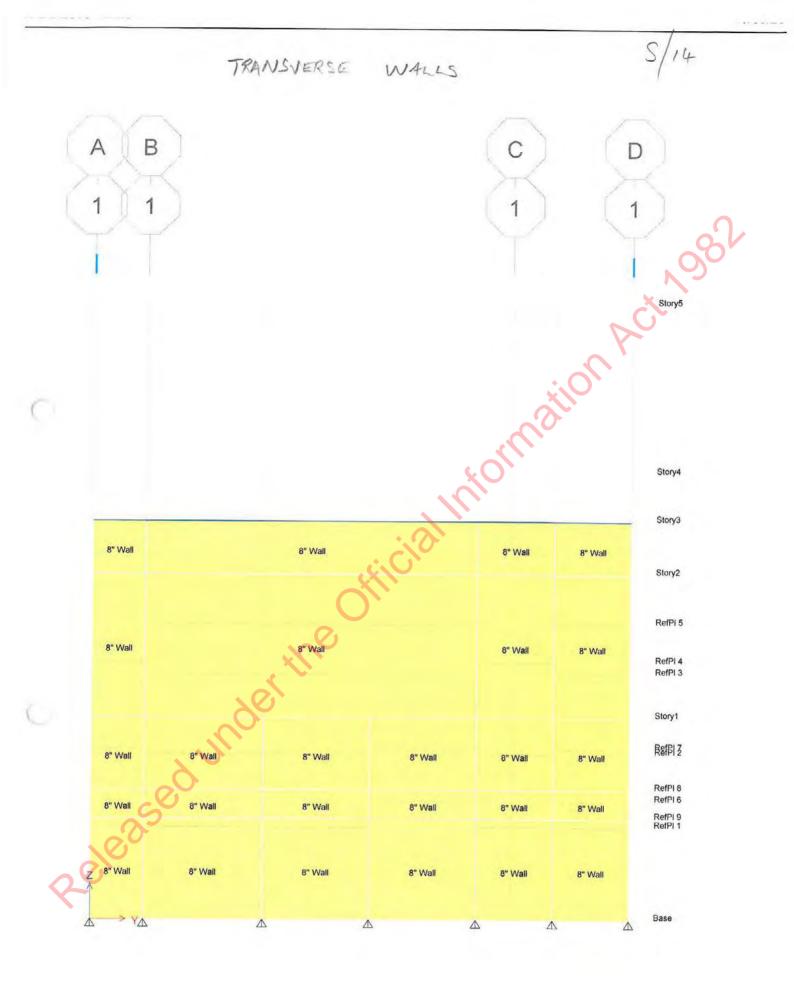
 $\phi = 0.75$ 

 $s_2 = 305 \text{ mm}$ 

Capacity reduction factor Area of shear reinforcement within a distance Yield strength of the shear reinforcement

Effective depth of wall Gross area of section Shear area Shear resisted by concrete Concrete shear strength Shear resisted by reinforcement Probable shear resistance

Minimum Requirements Minimum reinforcement


Max Allowable Shear Stress Shear stress Max nominal shear stress  $d = 0.8 \times L_w = 9.103m \\ A_g = L_w \times t = 2309937.000mm^2 \\ A_{cv} = d \times t = 1847949.600mm^2 \\ v_c = 0.17 \times (\sqrt{(f_c)} \times 1 \ kg^{0.5} \times 1 \ m^{-0.5} \times 1 \ s^{-1} \times 1000 + N/A_g) = 0.931 \ MPa \\ V_c = v_c \times A_{cv} = 1720.814 \ kN \\ V_s = A_v \times f_{yt} \times d / s_2 = 1045.674kN \\ V_p = \phi \times (V_c + V_s) = 2074.866 \ kN$ 

 $A_{y_{min}} = 0.7 \times 1000 \text{kg} / 1 \text{mm} / 1 \text{s}^2 \times \text{t} \times \text{s}_2 / \text{f}_{yt} = 177 \text{ mm}^2$ 

 $v = V / (L_w \times t) = 0.000 \text{ MPa}$  $v_{max} = min(0.2 \times f_c,8MPa) = 6.000MPa$ 

Av = 143mm² (2 layer of 3/8" diameter bars)

fyt = 245MPa (33,000 psi x 1.08)







Opus International Consultants PO Box 12003 Wellington 6144	Project	Wall Shea	Job Ref.			
	Section	GL2 8"	Sheet no./rev.			
	Calc. by PMO	Date 18/09/2015	Chk'd by	Date	App'd by	Date
Shear Capacity of Concrete	Wall					
Axial compressive load		N = 1 kN				
Axial compressive load Shear action		N = 1 kN V = 1 kN				0
	١		a			പ

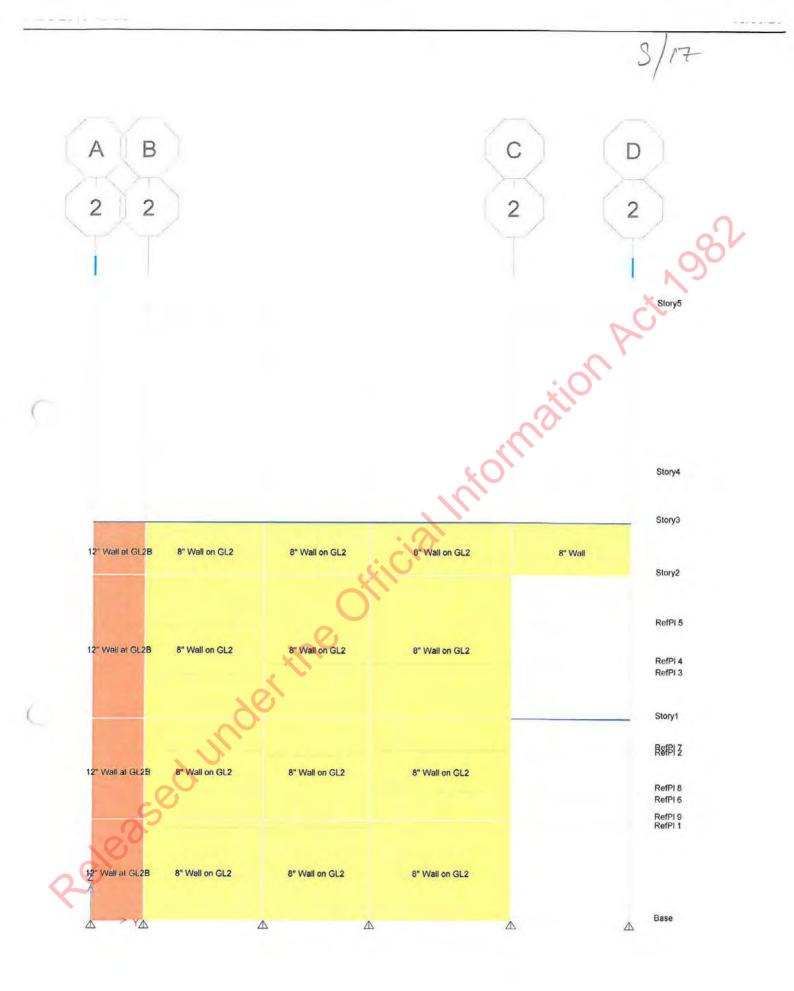
t = 203 mm

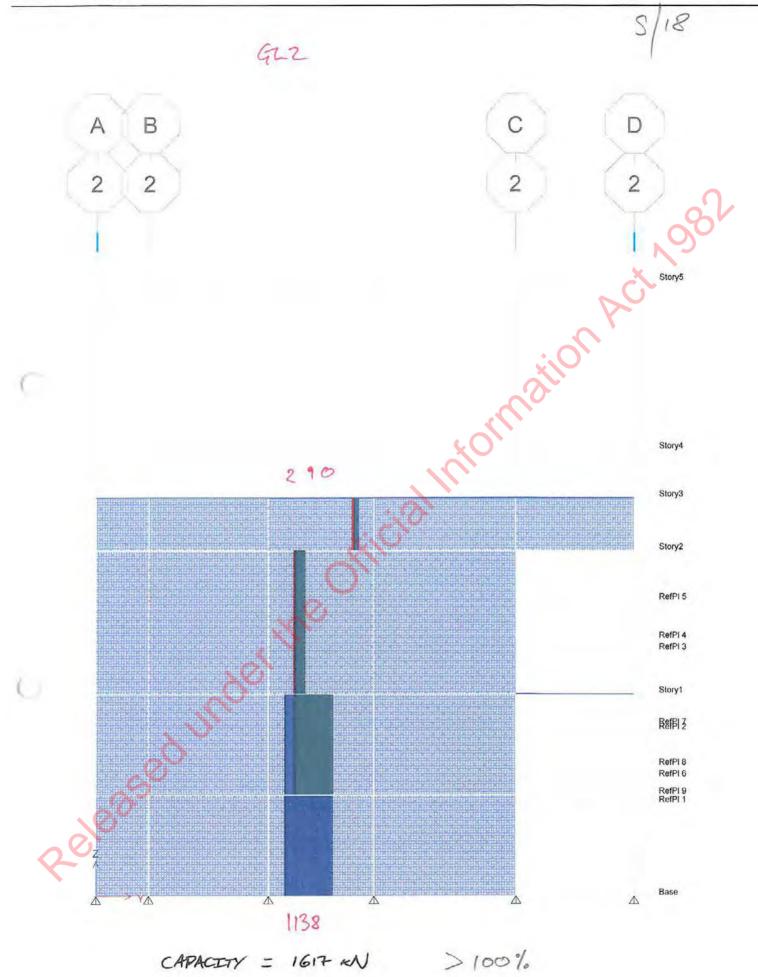
 $s_2 = 305 \text{ mm}$ 

 $\phi = 0.75$ 

Wall thickness Capacity reduction factor Area of shear reinforcement within a distance Yield strength of the shear reinforcement

Effective depth of wall Gross area of section Shear area Shear resisted by concrete Concrete shear strength Shear resisted by reinforcement Probable shear resistance


Minimum Requirements Minimum reinforcement


Max Allowable Shear Stress Shear stress Max nominal shear stress  $A_v = 143 \text{mm}^2$  (2 layer of 3/8" diameter bars)

fyt = 245MPa (33,000 psi x 1.08)

 $A_{y_{min}} = 0.7 \times 1000 \text{kg} / 1 \text{mm} / 1 \text{s}^2 \times \text{t} \times \text{s}_2 / \text{f}_{yt} = 177 \text{ mm}^2$ 

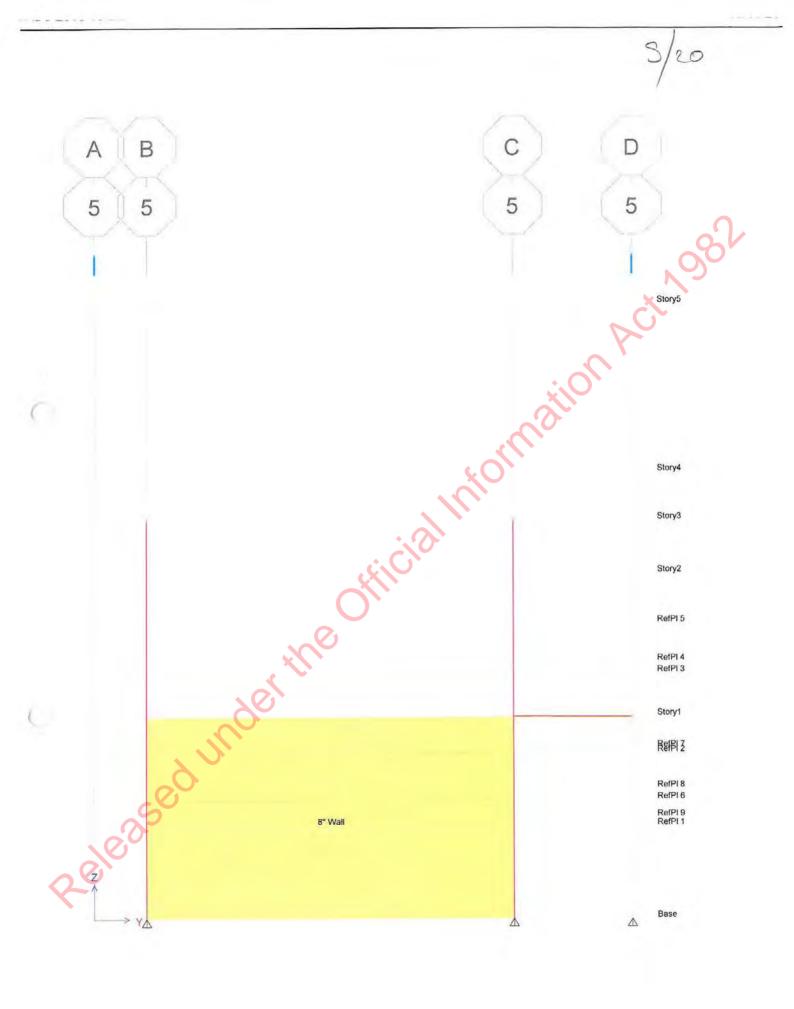
 $v = V / (L_w \times t) = 0.001 \text{ MPa}$  $v_{max} = min(0.2 \times f_c, 8MPa) = 6.000MPa$ 

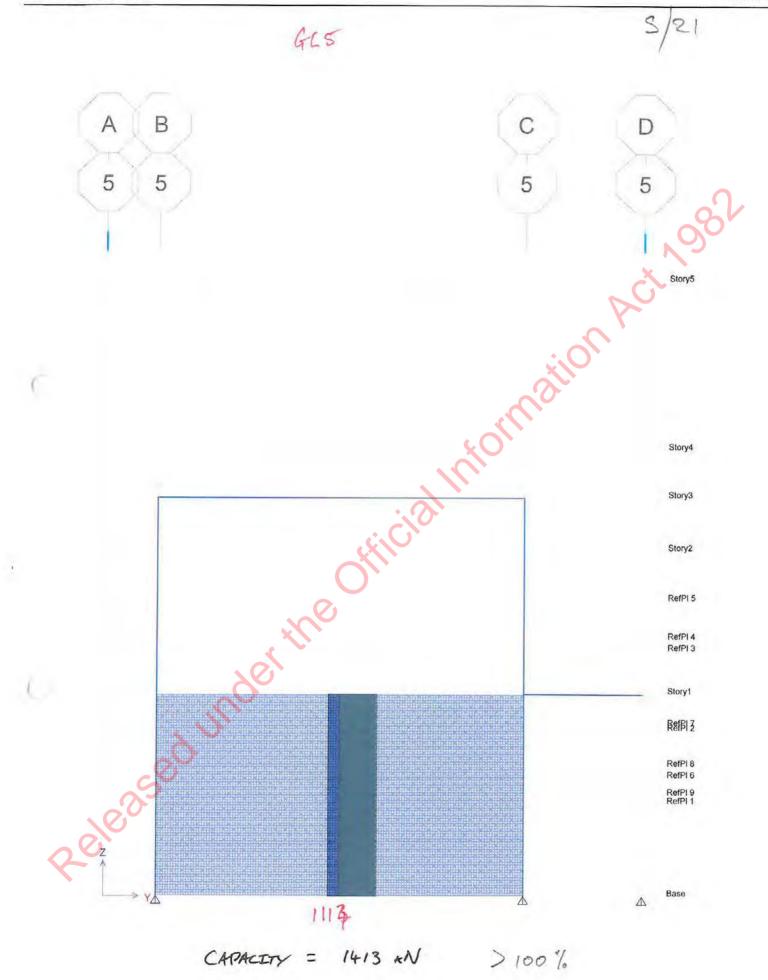


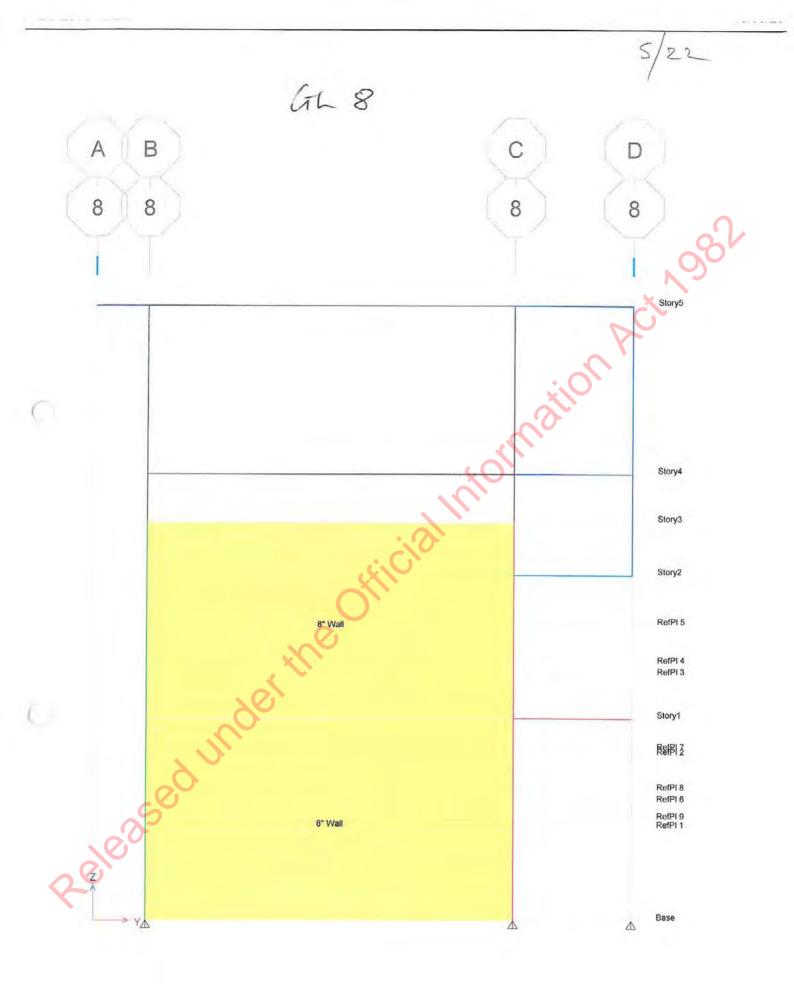


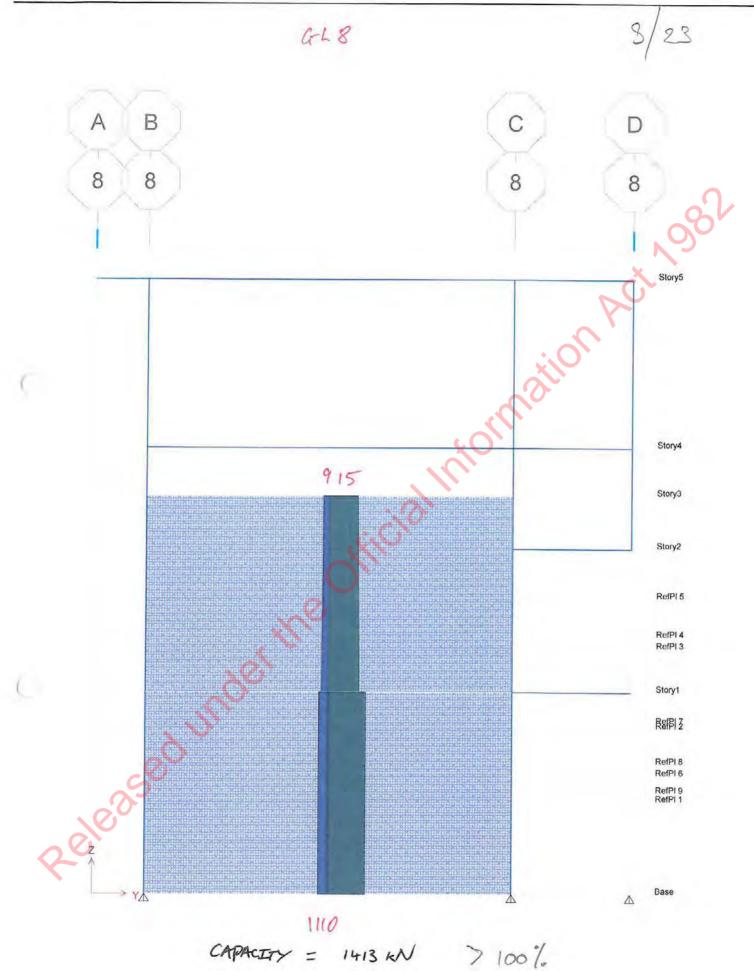
OPUS	Project	Job Ref. (				
Opus International Consultants PO Box 12003	Section	GL5 8"	Thick Wall		Sheet no./rev.	1
Wellington 6144	Calc. by PMO	Date 18/09/2015	Chk'd by	Date	App'd by	Date
Shear Capacity of Concrete	Vall - Ai	PPLICABLE	FOR GL	-5, GL 8,	GL12,	GLIY
Axial compressive load		N = 1 kN				
Shear action		V = 1 kN				0
Concrete compressive strength		fc = 30MPa	a			oil
Length of wall		L _w = 7.747	'n			Q.
Wall thickness		t = 203 mm	n		N	
Capacity reduction factor		$\phi = 0.75$				
Area of shear reinforcement with	hin	A _v = 143m	m ² (2 layer of 3/	8" diameter bars		
a distance		s ₂ = 305 m				
Yield strength of the shear rein	orcement	f _{yt} = 245MI	Pa (33,000 psi >	(1.08)	<b>X</b>	
Effective depth of wall		d = 0.8 × L	. _w = 6.198m	<i>`</i> 0,		
Gross area of section		$A_g = L_w \times t$	= 1572641.000	mm ²		
Shear area		$A_{cv} = d \times t$	= 1258112.800r	nm²		
				0.5		

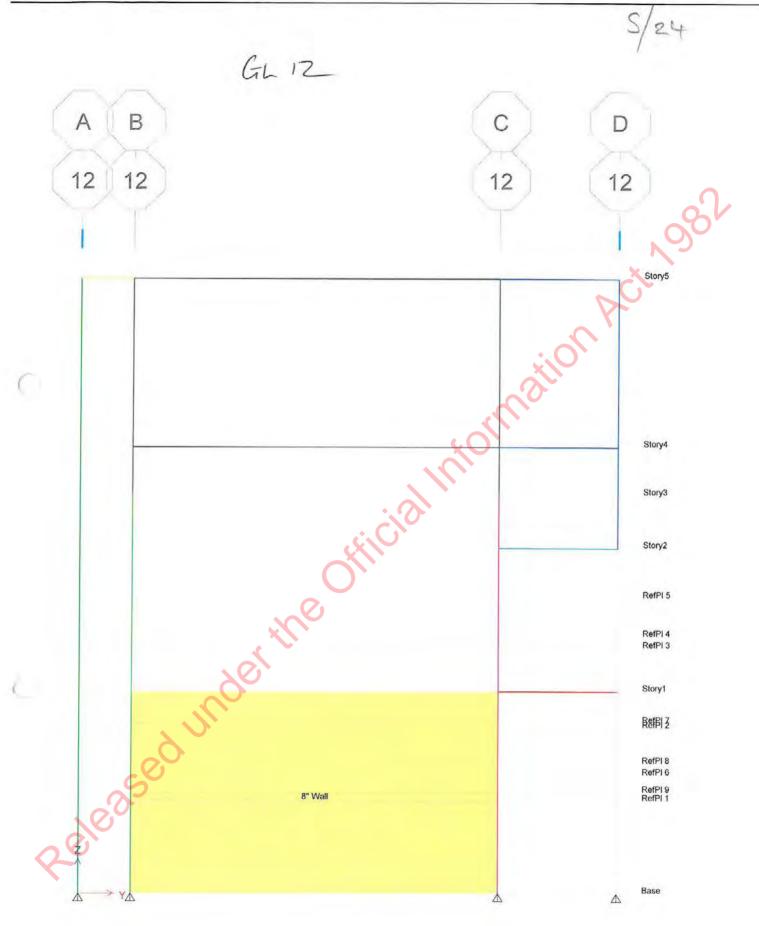
Shear resisted by concrete $v_c = 0.17 \times (\sqrt{(f_c)} \times 1 \text{ kg}^{0.5} \times 1 \text{ m}^{-0.5} \times 1 \text{ s}^{-1} \times 1000 + \text{ N/ Ag}) = 0.931 \text{ MPa}$ Concrete shear strength $V_c = v_c \times A_{cv} = 1171.600 \text{ kN}$ Shear resisted by reinforcement $V_s = A_{v} \times f_{yt} \times d / s_2 = 711.911 \text{ kN}$ Probable shear resistance $V_p = \phi \times (V_c + V_s) = 1412.634 \text{ kN}$ 


Minimum Requirements Minimum reinforcement

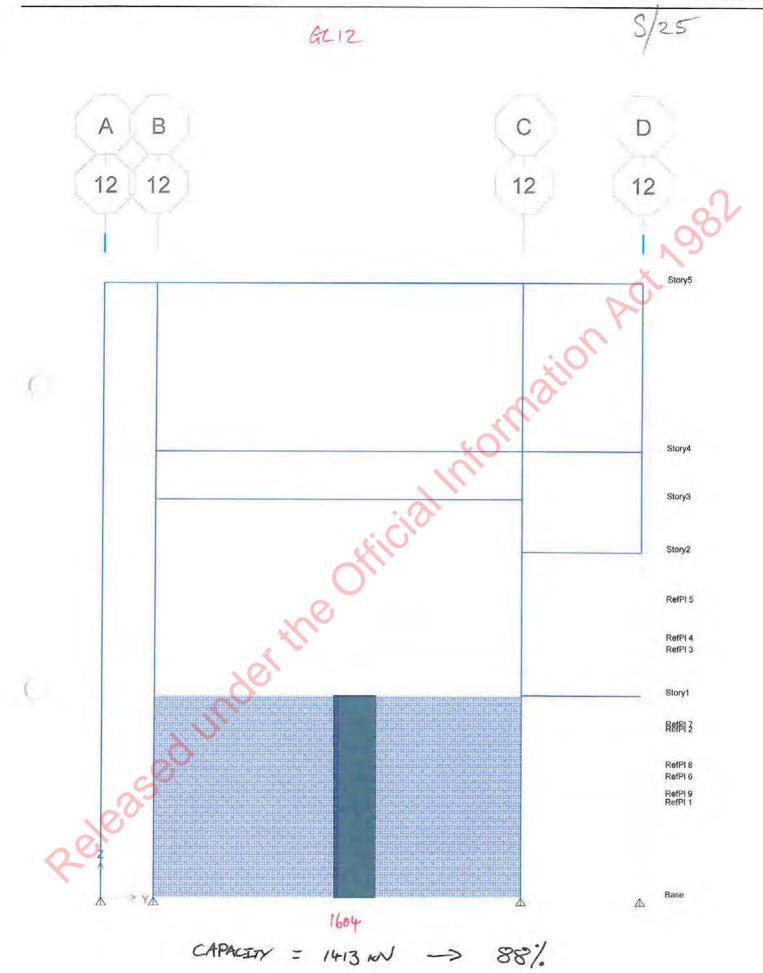

Max Allowable Shear Stress Shear stress Max nominal shear stress

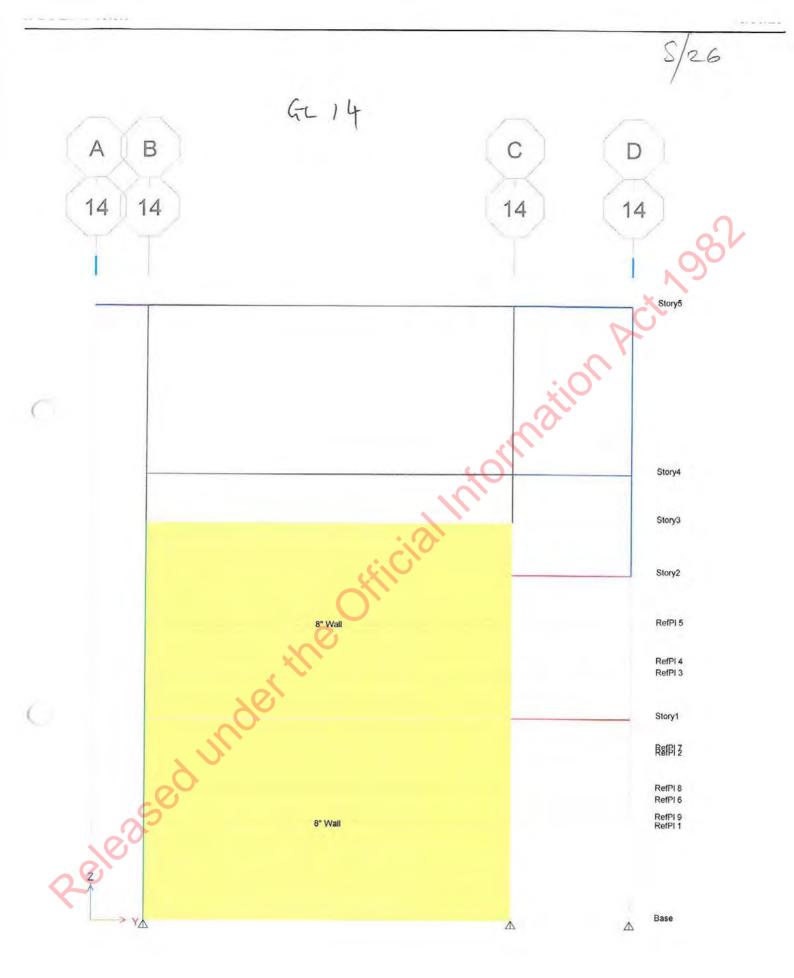

v = V / (L_w × t) = 0.001 MPa


 $A_{y_{min}} = 0.7 \times 1000 \text{kg} / 1 \text{mm} / 1 \text{s}^2 \times \text{t} \times \text{s}_2 / \text{f}_{yt} = 177 \text{ mm}^2$ 


 $v_{max} = min(0.2 \times f_c, 8MPa) = 6.000MPa$ 













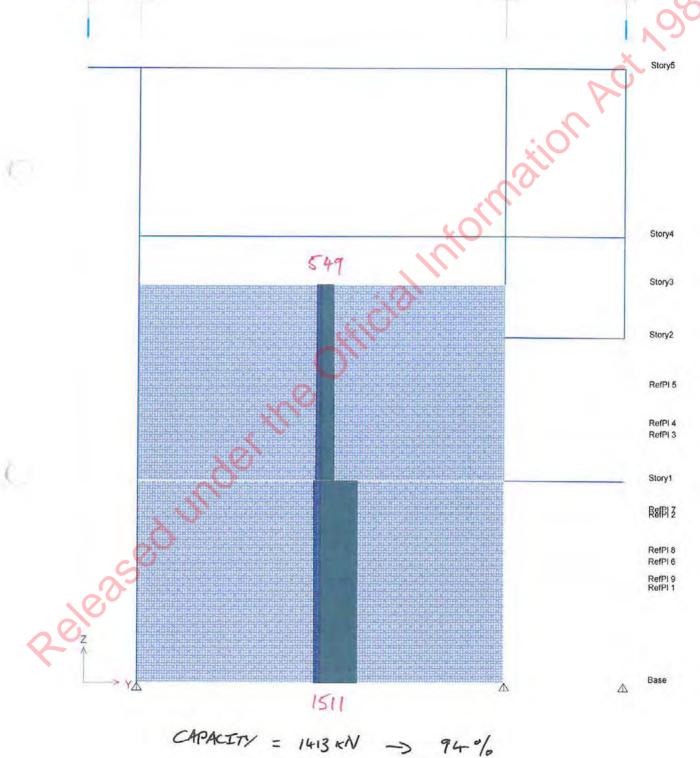



- . . . . .

A

14


B


14

S/27

D

14





## **CALCULATION SHEET**

WEGC EAST BLOCK DSA Project/Task/File No: Sheet No of **Project Description:** Office: Computed: AMO 18/10 12015 Check:

5/276

CONCRETE WALLS IN FLEXURE The concrete walls are all relatively long and somet, Transverse wall: 2-Storey = Height = 8.414m -> Aspect rations 0.74 Length = 11.379m Incidentally, more force inputted into the walk at 1st floor level, no aspect ratio actually more like 0.4. 1> By inspection, shear governed. But check noment demand its rapacity for typical wall WALL ON GL 12 3 8" THICK V# : 1604 AN 1 5/25 ( 88% NBS bared on shear capoecity) h = 4.267 m :. M* = 6844 4Am - M= 1.25, Sp: 0.9 Original drawings = Wall G 2-layers 3/8" Bars each way, plus end columns Length 7.747m 14-1" 10 01 1 1 1 1 10.00 Ascial load = 307 KN min -> 414 KN max Mn = 6240 KN . 91% baced on M= 1.25 loads Better than for shear ) 10 88%) Allowing some yielding, probably > 100% OPUS

	[ Flanges (to	o and/or bottom ) and	axial load are optic	onal. For walls/co	olumns see note 2 or the	e MANUAL.]	_
				Project:			1
TEP 1	Describe the				Date:	Time:	
	(use consistent through out the	units e.g. N and spreadsheet)	mm	L	08-Oct-15	13:26	-
						_	
	Veb width (w) =	oth (d) =		the second s	7747 203		mm
	Top flange width	excluding web (b	1) =		102	<	mm
		ess (t) =			406	THESE	mm
	Bottom flange wie	th excluding wel	b (b2) =		102	6 values	mm
	Bottom flange thi	ckness (b) =			406	may	mm
	Axial compressiv	e load (P) and,			350,000	be	N
	Depth from top s	urface of this load	(di)		3873.5	zero	mm
	Assumed tensile				0 200,000	<	N/mm2 N/mm2
	I Steel Flastic Mod	lulus (Es)			200,000		
TEP 2 .	Describe stee describe locatior	I sizes and locati of the centroid of Describe Locatio	ions f up to 10 bar bu n of each bundle	Indles from eith	e surface.	ation	= E _s /E _c
0	Describe stee describe locatior bottom surface. Modular rati	I sizes and locati of the centroid of Describe Locatio o (n=Es*(1+0	ions f up to 10 bar bu n of each bundle	Indles from either from only one	BOTTOM E		
No.	Describe stee describe locatior bottom surface. Modular rati TOP BAR Bar	I sizes and locati of the centroid of Describe Locatio o (n=Es*(1+0 S Distance	ions f up to 10 bar bu n of each bundle	Indles from either from only one	e surface.	BARS Distance From Bottom	
	Describe stee describe locatior bottom surface. Modular rati	I sizes and locati of the centroid of Describe Locatio o (n=Es*(1+0	ions f up to 10 bar bu n of each bundle	Indles from either from only one	BOTTOM E Bar	Distance	
No.	Describe stee describe locatior bottom surface. Modular rati TOP BAR Bar	I sizes and locati of the centroid of Describe Locatio o (n=Es*(1+0 S Distance From Top	ions f up to 10 bar bu n of each bundle	Indles from either from only one	BOTTOM E Bar	Distance From Bottom	
No. Bars	Describe stee describe locatior bottom surface. Modular rati TOP BAR Bar Diam	I sizes and locati of the centroid of Describe Locatio o (n=Es*(1+0 S Distance From Top Surface 203.00 558.00	ions f up to 10 bar bu n of each bundle	ndles from eithe from only one	BOTTOM E Bar Diam 25.40 9.53	Distance From Bottom Surface 203.00 558.00	= E _s /E _c
No. Bars 4	Describe stee describe locatior bottom surface. Modular rati TOP BAR Bar Diam 25.40 9.53 9.53	I sizes and locati of the centroid of Describe Locatio o (n=Es*(1+C S Distance From Top Surface 203.00 558.00 1160.00	ions f up to 10 bar bu n of each bundle	ndles from eithe from only one	BOTTOM E Bar Diam 25.40 9.53 9.53	Distance From Bottom Surface 203.00 558.00 1160.00	= E _s /E _c
No. Bars 4 2 2 2	Describe stee describe locatior bottom surface. Modular rati TOP BAR Bar Diam 25.40 9.53 9.53 9.53	I sizes and locati of the centroid of Describe Locatio o (n=Es*(1+C S Distance From Top Surface 203.00 558.00 1160.00 2064.00	ions f up to 10 bar bu n of each bundle	No of Bars 4 2 2	e surface. BOTTOM E Bar Diam 25.40 9.53 9.53 9.53	Distance From Bottom Surface 203.00 558.00 1160.00 2064.00	= E _s /E _c
No. Bars 4 2 2 2 2	Describe stee describe locatior bottom surface. Modular rati TOP BAR Bar Diam 25.40 9.53 9.53 9.53 9.53	I sizes and locati of the centroid of Describe Locatio o (n=Es*(1+C S Distance From Top Surface 203.00 558.00 1160.00 2064.00 2968.00	ions f up to 10 bar bu n of each bundle	No of Bars 4 2 2 2 2 2	e surface. BOTTOM E Bar Diam 25.40 9.53 9.53 9.53 9.53	Distance From Bottom Surface 203.00 558.00 1160.00 2064.00 2968.00	= E _s /E _c
No. Bars 4 2 2 2 2 2	Describe stee describe locatior bottom surface. Modular rati TOP BAR Bar Diam 25.40 9.53 9.53 9.53 9.53 9.53 9.53	I sizes and locati of the centroid of Describe Locatio o (n=Es*(1+C S Distance From Top Surface 203.00 558.00 1160.00 2064.00 2968.00 3873.00	ions f up to 10 bar bu n of each bundle	No of Bars 4 2 2 2 0	e surface. BOTTOM E Bar Diam 25.40 9.53 9.53 9.53	Distance From Bottom Surface 203.00 558.00 1160.00 2064.00	= E _s /E _c
No. Bars 4 2 2 2 2 2 0	Describe stee describe locatior bottom surface. Modular rati TOP BAR Bar Diam 25.40 9.53 9.53 9.53 9.53	I sizes and locati of the centroid of Describe Locatio o (n=Es*(1+C S Distance From Top Surface 203.00 558.00 1160.00 2064.00 2968.00	ions f up to 10 bar bu n of each bundle	No of Bars 4 2 2 2 2 2	e surface. BOTTOM E Bar Diam 25.40 9.53 9.53 9.53 9.53 9.53 0.00	Distance From Bottom Surface 203.00 558.00 1160.00 2064.00 2968.00 0.00	= E _s /E _c
No. Bars 4 2 2 2 2 2	Describe stee describe locatior bottom surface. Modular rati TOP BAR Bar Diam 25.40 9.53 9.53 9.53 9.53 9.53 9.53 9.53 9.53	I sizes and location of the centroid of Describe Location on (n=Es*(1+C) S Distance From Top Surface 203.00 558.00 1160.00 2064.00 2968.00 3873.00 0.00	ions f up to 10 bar bu n of each bundle	No of Bars 4 2 2 0 0	e surface. BOTTOM E Bar Diam 25.40 9.53 9.53 9.53 9.53 9.53 0.00 0.00	Distance From Bottom Surface 203.00 558.00 1160.00 2064.00 2968.00 0.00 0.00	= E _s /E _c

Concrete ultimate strain (e)       0.03         Ratio of (stress block)/(N.A.) depths.       0.85         Axial compressive load (P) and,       350,000         depth from top surface of this load (di)       3873.5         Crack root tensile stress (say 0.5ft)       0.0         Concrete Elastic Modulus (Ec)       25,084         Concrete compressive strength (fc)       30         Steel Elastic Modulus (Es)       200,000         Steel Yield Stress (Fy)       245         Analysis results shown below correspond to the conditions that exist         when the peak compression strain equals (e) given above. A rectangular stress block with average stress=0.85fc is assumed.         LTS FOR ULTIMATE MOMENT SECTION ANALYSIS:         (a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c).       2.02E+02         Steel Stress (Maximum Tension)       2.45E+02         Crack Depth       7.55E+03         Total Tension Force (including P).       1.25E+06         Total Compression Force -incl. comp steel.       1.33E+06	ionAct	=33
Axial compressive load (P) and,       350,000         depth from top surface of this load (di)       3873.5         Crack root tensile stress (say 0.5ft)       0.0         Concrete Elastic Modulus (Ec)       25,084         Concrete compressive strength (f'c)       30         Steel Elastic Modulus (Es)       200,000         Steel Yield Stress (Fy)       245         Analysis results shown below correspond to the conditions that exist when the peak compression strain equals (e) given above. A rectangular stress block with average stress=0.85f'c is assumed.         LTS FOR ULTIMATE MOMENT SECTION ANALYSIS:         (a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)       2.02E+02         Steel Stress (Maximum Tension)       2.45E+02         Crack Depth       7.55E+03         Total Tension Force (including P)       1.25E+06         Total Compression Force -incl. comp steel       1.33E+06	ionAct	=33
depth from top surface of this load (di)       3873.5         Crack root tensile stress (say 0.5ft)       0.0         Concrete Elastic Modulus (Ec)       25,084         Concrete compressive strength (fc)       30         Steel Elastic Modulus (Es)       200,000         Steel Yield Stress (Fy)       245         Analysis results shown below correspond to the conditions that exist when the peak compression strain equals (e) given above. A rectangular stress block with average stress=0.85fc is assumed.         LTS FOR ULTIMATE MOMENT SECTION ANALYSIS:         (a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c).       2.02E+02         Steel Stress (Maximum Tension).       2.45E+02         Crack Depth       7.55E+03         Total Tension Force (including P).       1.25E+06         Total Compression Force -incl. comp steel.       1.33E+06	ionAct	=33
Crack root tensile stress (say 0.5ft)       0.0         Concrete Elastic Modulus (Ec)       25,084         Concrete compressive strength (fc)       30         Steel Elastic Modulus (Es)       200,000         Steel Yield Stress (Fy)       245         Analysis results shown below correspond to the conditions that exist when the peak compression strain equals (e) given above. A rectangular stress block with average stress=0.85f'c is assumed.         LTS FOR ULTIMATE MOMENT SECTION ANALYSIS:         (a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c).       2.02E+02         Steel Stress (Maximum Tension)       2.45E+02         Crack Depth       7.55E+03         Total Tension Force (including P)       1.25E+06         Total Compression Force -incl. comp steel       1.33E+06	tion	=33
Concrete Elastic Modulus (Ec)       25,084         Concrete compressive strength (f'c)       30         Steel Elastic Modulus (Es)       200,000         Steel Yield Stress (Fy)       245         Analysis results shown below correspond to the conditions that exist when the peak compression strain equals (e) given above. A rectangular stress block with average stress=0.85f'c is assumed.       A rectangular stress block with average stress=0.85f'c is assumed.         LTS FOR ULTIMATE MOMENT SECTION ANALYSIS:       2.02E+02         (a) CRACK PROPAGATING FROM BOTTOM       2.02E+02         Steel Stress (Maximum Tension)       2.45E+02         Crack Depth       7.55E+03         Total Tension Force (including P)       1.25E+06         Total Compression Force -incl. comp steel       1.33E+06	tionAct	=33
Concrete compressive strength (fc)	tionAct	=33
Steel Elastic Modulus (Es)	tion Act	0
Steel Yield Stress (Fy)	tionAct	0
Analysis results shown below correspond to the conditions that exist when the peak compression strain equals (e) given above. A rectangular stress block with average stress=0.85f'c is assumed.         LTS FOR ULTIMATE MOMENT SECTION ANALYSIS:         (a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)	ion Act	
when the peak compression strain equals (e) given above. A rectangular stress block with average stress=0.85f°c is assumed.         TS FOR ULTIMATE MOMENT SECTION ANALYSIS:         (a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)	tionAct	
when the peak compression strain equals (e) given above. A rectangular stress block with average stress=0.85f°c is assumed.         TS FOR ULTIMATE MOMENT SECTION ANALYSIS:         (a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)	tionAct	
stress block with average stress=0.85f°c is assumed.         TS FOR ULTIMATE MOMENT SECTION ANALYSIS:         (a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)	tionAct	
TS FOR ULTIMATE MOMENT SECTION ANALYSIS:         (a) CRACK PROPAGATING FROM BOTTOM         Depth to N.A.(zero stress) from top (c)	tionAc	
(a) CRACK PROPAGATING FROM BOTTOMDepth to N.A.(zero stress) from top (c)	tion	
(a) CRACK PROPAGATING FROM BOTTOMDepth to N.A.(zero stress) from top (c)	ion	
(a) CRACK PROPAGATING FROM BOTTOMDepth to N.A.(zero stress) from top (c)	jo'	
Depth to N.A.(zero stress) from top (c)2.02E+02Steel Stress (Maximum Tension)2.45E+02Crack Depth7.55E+03Total Tension Force (including P)1.25E+06Total Compression Force -incl. comp steel1.33E+06	A	
Steel Stress (Maximum Tension)       2.45E+02         Crack Depth       7.55E+03         Total Tension Force (including P)       1.25E+06         Total Compression Force -incl. comp steel       1.33E+06		
Steel Stress (Maximum Tension)       2.45E+02         Crack Depth       7.55E+03         Total Tension Force (including P)       1.25E+06         Total Compression Force -incl. comp steel       1.33E+06		1
Total Tension Force (including P)       1.25E+06         Total Compression Force -incl. comp steel       1.33E+06		
Total Compression Force -incl. comp steel 1.33E+06		
	Ratio T/C =	
	0.937	N
Ideal Flex strength (Mi)SEE NOTE 2	(=1.0 for iteration	62
Section Curvature (from curv = e/c )	convergence)	θ
		53
· · · ·		K
(b) CRACK PROPAGATING FROM TOP		11
Depth to N.A.(zero stress) from bottom (c) 2.02E+02		
Steel Stress (Maximum Tension) 2.45E+02	<ul> <li>A commence 4</li> </ul>	
Crack Depth	and the second second	
Total Tension Force (including P)       1.25E+06	Ratio T/C =	
Total Compression Force -incl. comp steel	0.937	N
Ideal Flex strength (Mi)SEE NOTE 2 6.24E+09	(=1.0 for iteration	62
Section Curvature (from curv = e/c ) 1.49E-04	convergence)	θ
		53
		ĸ