ect/Task/File No: WEGC EAST BLOCK	Cheat No.	1
ect Description:	Sheet No	01
o. Door, p. rom	Office:	PMO 122/091.
		122/011
	Check:	1
1ST FLOOR DIAPHRAGM		
CONNECTION TO WALLS		0
2"@ 10" c/c		O
5		1
35" @ 10° c/c	100	
	No.	
Total = (71+127) @ 254 mm c/c = 198	2 mm2 (2) 254ma	2
f. = 245 MPa		
ty - X45 Mra	70	
Using Shear friction approach: 198x.	1000 0	121 1//
	245 × 1000 =	111 KM/m
0:752 191 = 14-3 AN/m		
For Tupical 8" wall : Chength :	8.869	4-2
1432 8.263 = 1268 AN		
Colaser than Down d. Mar	- 1C)	
662 = 1138-270 = 848	ω Λ <i>I</i>	
5 Greater than demand. Mass 612 = 1138-270 = 848 6614 \$ 1511-549 = 962	peN .	
.`. O.k.		
CHECK SLAB FOR SHEAR		
Using wall analogy: .		
Bars = 30" @ 10" c/c Vp = 1275 KN - 0.K.	03	
Bars = 3/2" @ 10" c/c		
Vp = 1275 xN - 0.4.		
2. I find the first of the firs		

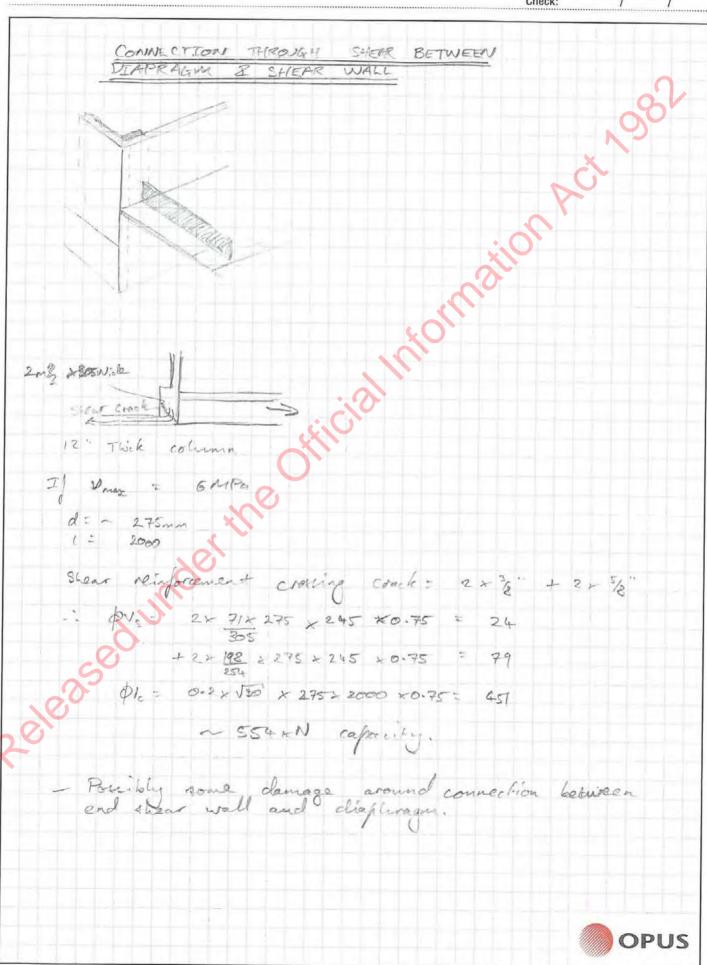
CHECK SLAB FOR BENDING:

Aspect ratio of slab sections:

Worse cale = 9:5 = 1.4

L) Shear governed by inspersion.


DIAPHRAGM O.K. FOR BENDING


5/28 5

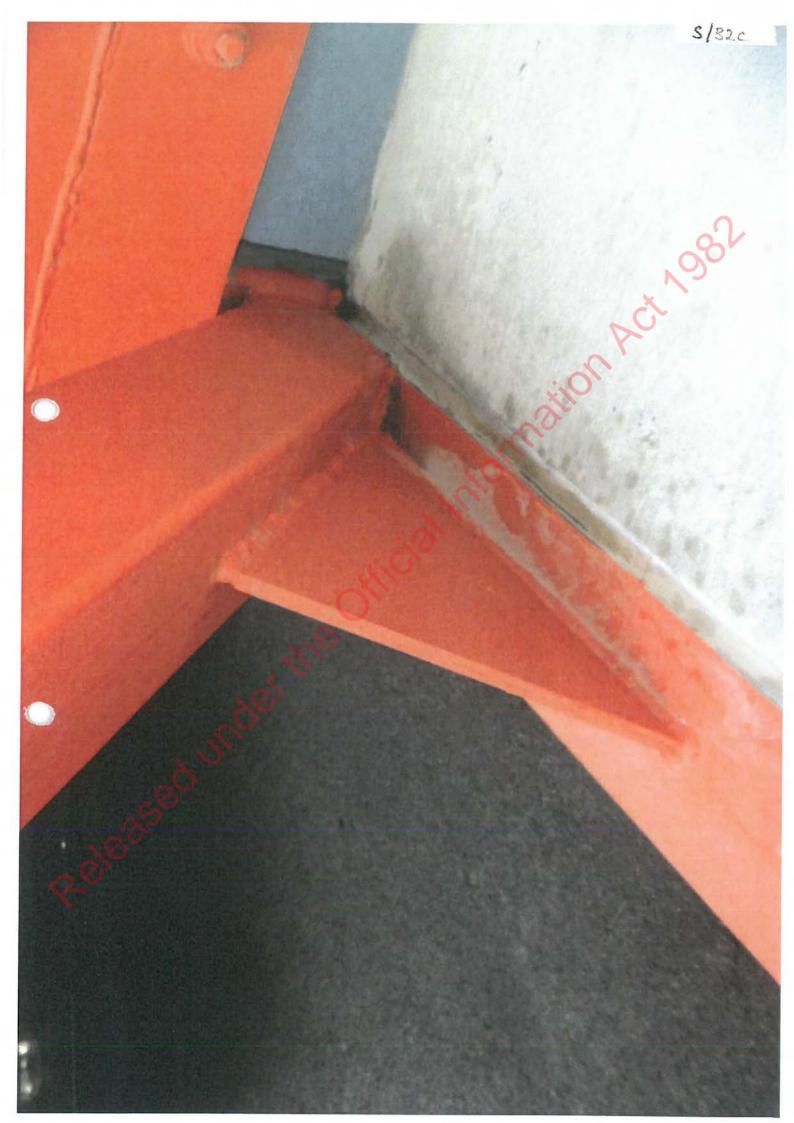
OPUS

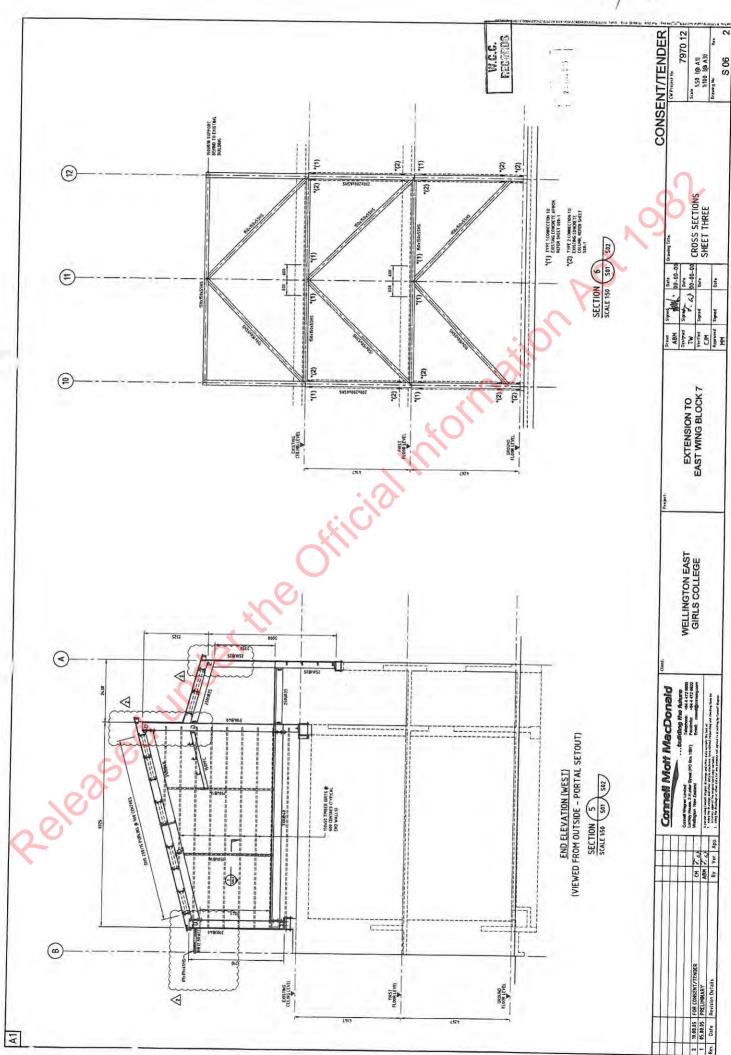
ct Description:	WEGG			V6			Sheet No	0	1
or poorthion.	**********************				***************************************		Office: Computed: /	DMOI	/******** ·
***************************************	***************************************	***************************************	***************************************			******************	Check:	1	
	1 1 1 1								
	EXIST	TALE	CONC	RETE	FRAME	ON	NORTH	ET EVAT	10
									10
	SHEAR	WALL	AT E	EAST E	ND:			- 0	2
wall	not oli	rectly	connec	Red -	io olinj	Limanin	at 150	Floor .	U
		0			/	0			
+									
		15	FL				0		
					Frame	×	$\langle O, +$		
				- E	lye of Di	in phone on			
SA	ear va				~ .	1			
		unth	2-3201	" E/E E.W)					
- Some	bend	ing in	wal	1 22	heckeel	Cout .	of plane)	to H	an
- Sue forios		U						6.36	
		~*		?					
<u></u>	ETC	OF I	WALL	:(C)					
8" 7	mick	->	φv.	+ dus	= 792	AN			
			O						
CAPA	CITY	of X	SCAB 7	O WA	LL CON	MECT	CM		
						111			
b									
W W		1/2"	@ 10"	= 6 x	1277 24	5 =	187W		
- 4	XY-	- 1	+						
9		Framor 5							
	*	1							
0,0	13/8" @	12.10	5 ×	71 + 2	45 =	<	87 KN		
IN	SPANDRE	1:							
2 2	1" 2		1		245 =	210	. /		
5×	Ng .	Bors =	52 1	18 ×	245 =	242	KN		
							KN		

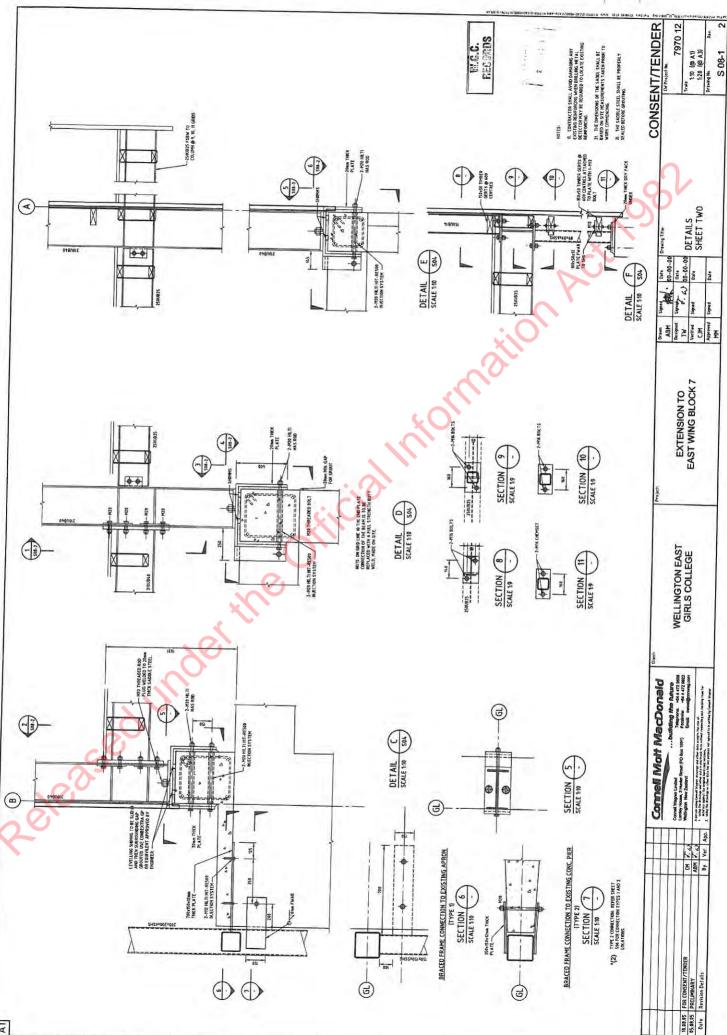
Project/Task/File No:	WEGE	EAST	BLOCK	DSA	Sheet No	of
Project Description:					Office:	
			***************************************		Computed: PMO	111/09/2015
					Check:	1 1


CALCULATION SHEET WEGC EAST BLOCK Project/Task/File No: Sheet No **Project Description:** Office: Computed: PMO1 9/09 12075 Check:

CBF Jorned with 200x6 SHS Columns and 150x5 SHS diagonals and collector beams. Fixed at 1st FI & 2nd FI to origina + at Roof (Neverport). **OPUS**

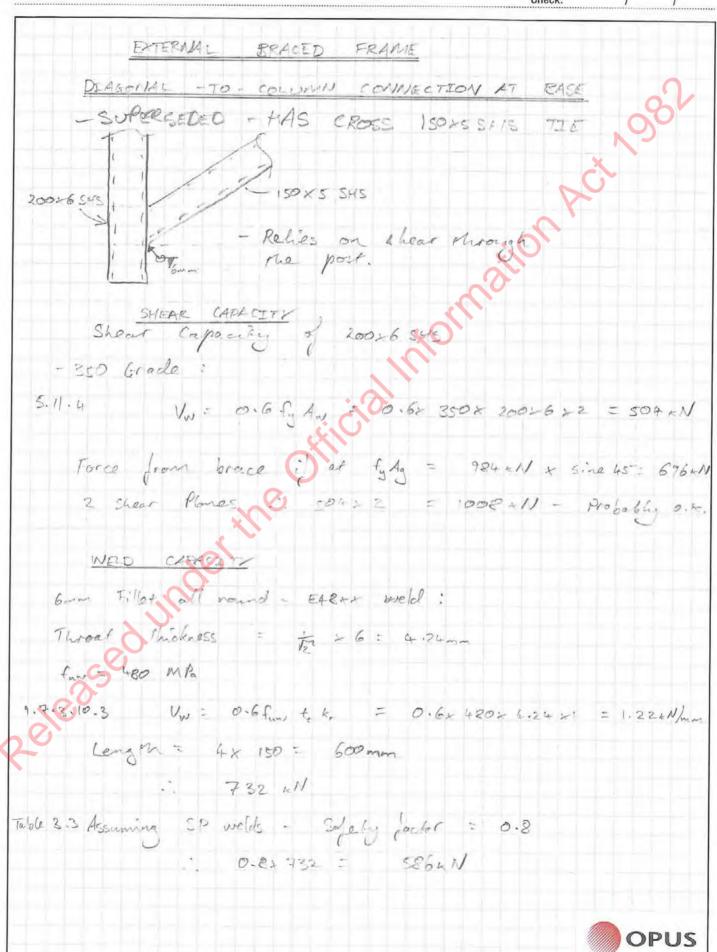




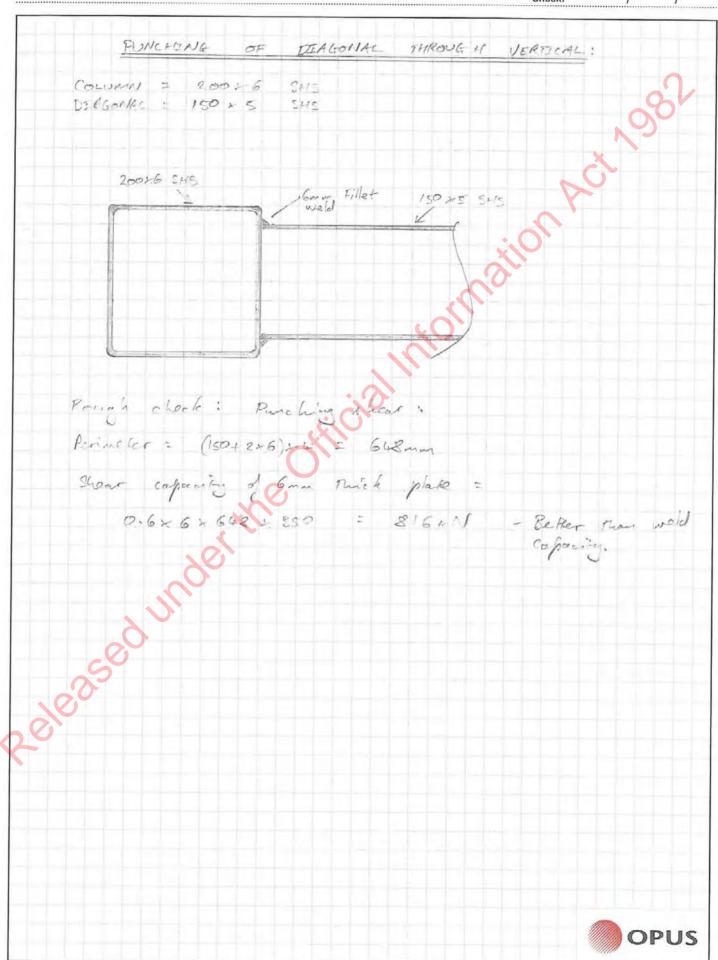


DIAGONAL BRACES

Axial capacity to NZS3404:1997 1 kN Force **Major Axis** Minor Axis Clear length x axis 5788 mm Clear length y axis 5788 mm 4.8.3 K_{ex} $K_{ex}L_{x}$ 5788 mm K_{ey}L_y 5788 mm Member SHS - 350LO 150 x 150 x 5.0 SHS f_y 350 MPa k, 1.0 58.7 mm 58.7 mm $(k_{ex}L_x/r_x) \times \sqrt{(f_v/250)}$ $(k_{ey}L_y/r_y) \times \sqrt{(f_y/250)}$ 117 117 6.2 Ns 984 kN Table 3.3 0.9 φNs 885 kN 6.3.3 λ_n 116.669 α_{a} 15.613 Table 6.3.3(1) α_b -0.5 λ 108.862 7 0.311 ξ 0.948 α_{c} 0.484 6.3.3 $\alpha_c N_s$ 476 kN Table 3.3 0.9 ϕN_c 429 kN Min ϕ Ns and ϕ Nc 429 kN - OK 150 x 150 x 5.0 SHS

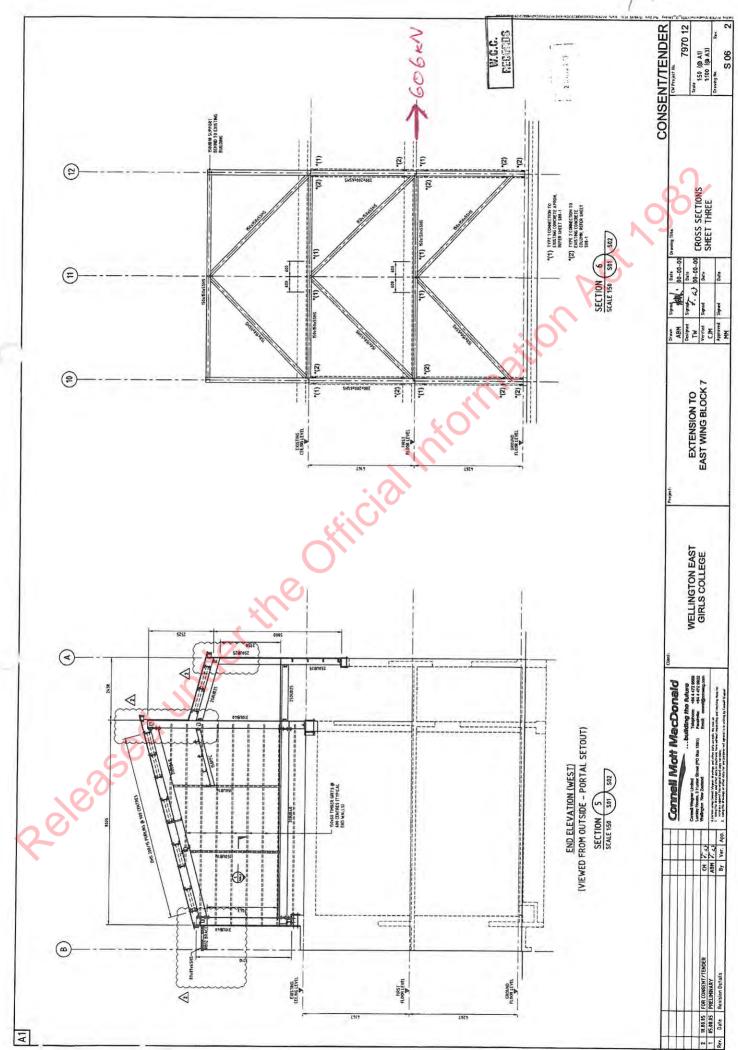

Axial Capacity Check

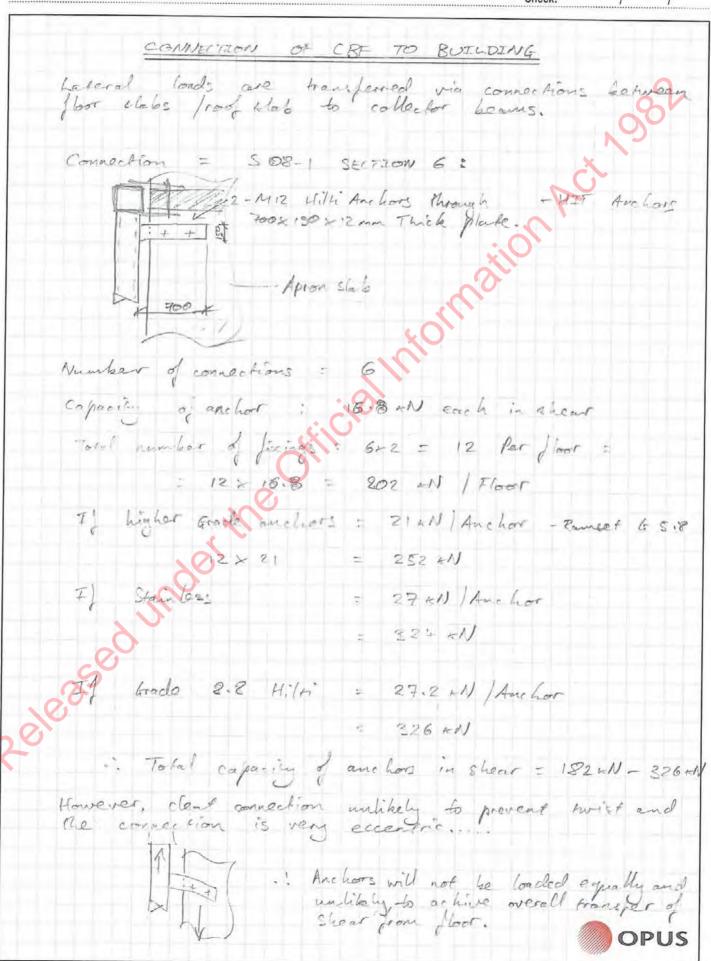
Axial Capacity Check - COLUMNS


Axial capacity to NZS3404:1997

	Force	1 kN		
	Major Axis		Minor Axis	
	Clear length x axis	4267 mm	Clear length y axis	4267 mm
4.8.3	K _{ex}	1	K _{ey}	1
	$K_{ex}L_{x}$	4267 mm	K _{ey} L _y	4267 mm
	Member	SHS - 350LO 200 x 200 x 6.0 SHS		CX
	f _y	350 MPa	1	
	k_f	1.0		
	r _x	78.6 mm	r_{v}	78.6 mm
	$(k_{ex}L_x/r_x) \times \sqrt{(f_y/250)}$	64	$(k_{\rm ey}L_{\rm y}/r_{\rm y}) \times \sqrt{(f_{\rm y}/250)}$	64
6.2	Ns	1586 kN		
Table 3.3	ф	0.9		
	φNs	1427 kN		
2 4 5	al .			
6.3.3	λ_n	64.234		
	α_{a}	20.515		
Table 6.3.3(1)	α_{b}	-0.5		
	λ	53.976		
	η	0.132		
	ξ	2.074		
	α_{c}	0.841		
6.3.3	$\alpha_c N_s$	1333 kN		
Table 3.3	ф	0.9		
	ϕN_c	1200 kN		
	Min φNs and φNc	1200 kN	- ОК	
25		200 x 200 x 6.0 SHS		

Project/Task/File No:	WEGG	EAST	ELOCA	Sheet No	of
Project Description:				Office:	
	***************************************	*************************		Computed: PM	019/09/2015
				Check:	1 1


Project/Task/File No: WESC EXST BLOCK	Sheet No of
Project Description:	Office:
	Computed: PMO 107/0912015
	Check: / /


5/39

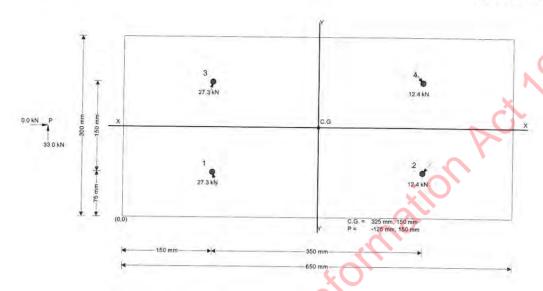
OPUS

ot/Task/File No: WEGC EAST ELOCK	Sheet No	of	
t Description:	Office:		***************************************
		PMO 109/0	9/2000
	Check:	1	/
	Olicok.		!
CAPACITY OF BRACED BAY			
Capacity based on assial compressive 18	renorth e	oliver o	and -
world - case = 429 4N	(0	
Lateral force to generale 429 xN in	prece :		
Brace = 45°			
1,00,00			
:. 429 + Sha 45 = 302+N			
2 8 (O		
2 Braces (1 Tension, 1 compression)			
· · · Capacity = 2 × 303 7 60	6 11		
			-
			-
			1
			-
			-
			++-
			+
			-

Project/Task/File No: Wa	EGC	EAST	SLOCK	Sheet No	of	f
Project Description:		******		Office:		
				Computed: Pau	1019/	09/2015
				Check:	1	1

oject/Task/File No:	WEEC	EAST	BLOCK		OL M		
oject Description:	***************************************			***************************************	Sheet No	0	of
			***************************************		Office:	DNOID	/
	***************************************	***************************************		***************************************		PNO121	09 12
			•••••••••••••••••••••••••••••••••••••••	***************************************	Check:		
							177
ITE	CHECK	FOR	REVISED	BOLT	CROUD		
1							
		7					DY
1	+ +					_ N 9)	Ш
4	+ +		4-M12				
4.		-					
12							
					XIO		
Connecti	ton Cre	pac. 24	C 25+ 33+	N per	Liscing por	u a _ (00
next y	some. 1				pace por		120
				-41			
Number	of lies	ings	per leve	(xs) 6			
	the state of the s						
	6 x	25 =	150	1	50 KN / F/6	201	
		5.5					
	6 8	33 t	198	-> 2	00 HN / Flo	or	
			CK10		/		
Includio	B 15 4						
I we troope	" port	Cema	nections:				
		(2)					
	1		~ 300 N x 2	- Cross	.1		
			NO SOURIV X Z	- 600 A	7		
		5					
dg	and the second s						
	O' I						
To fal							
Go fa l	= 2×6	600 ± 2	200 =	1400	KN		
0.0							
0							

	(M)	D.
	W.	9
To	44	١.
16	uu:	5


Opus International Consultants Ltd

Majestic Centre, 100 Willis Street PO Box 12003, Wellington 6144 New Zealand

	Project	WEGC Ea	st Block DSA		Job no. S	143
t	Calcs for		Start page no./	Revision		
	Calcs by PMO	Calcs date 21/09/2015	Checked by	Checked date	Approved by	Approved date

BOLT GROUP ANALYSIS

TEDDS calculation version 1.0.00

Geometry of bolt group

Number of rows	R = 2
Number of columns	C = 2
Pitch distance	S _x = 350 mm
Gauge distance	$S_y = 150 \text{ mm}$
Edge distance in vertical direction	d _y = 75 mm
Edge distance in horizontal direction	d _x = 150 mm

Load data

Vertical load applied on bolt group	P _y = 33.000 kN
Horizontal load applied on bolt group	$P_x = 0.000 \text{ kN}$
X coordinate of vertical force	X = -125 mm
Y coordinate of horizontal force	Y = 150 mm

Center of gravity of bolt group

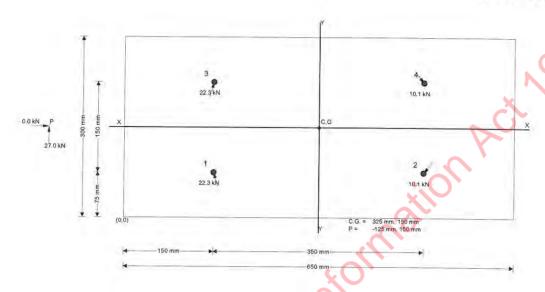
X distance of center of bolt group	$X_c = ((C-1) \times S_x) / 2 + d_x = 325 \text{ mm}$		
Y distance of center of bolt group	$Y_c = ((R - 1) \times S_y) / 2 + d_y = 150 \text{ mm}$		

Load eccentricity from center of gravity of bolt group

Eccentricity of vertical load from C.G.	$e_x = abs(X - X_c) = 450 \text{ mm}$
Eccentricity of horizontal load from C.G.	$e_y = abs(Y - Y_c) = 0 mm$
Moment about center of gravity	$M = P_x \times (Y - Y_c) - P_y \times (X - X_c) = 14.850 \text{ kNm}$

Bolt number	Bolt distance from centre of gravity		Direct shear		Torsional shear		Total force	
	X _i (mm)	Y _i (mm)	$P_{dx}(kN)$	$P_{dy}(kN)$	$P_{tx}(kN)$	$P_{ty}(kN)$	(kN)	
1	-175	-75	0.0	-8.2	7.7	-17.9	27.3	
2	175	-75	0.0	-8.2	7.7	17.9	12.4	
3	-175	75	0.0	-8.2	-7.7	-17.9	27.3	
4	175	75	0.0	-8.2	-7.7	17.9	12.4	

		1	n.	a.
		6	E	3)
T	e	d	d	S


Opus International Consultants Ltd

Majestic Centre, 100 Willis Street PO Box 12003, Wellington 6144 New Zealand

Project WEGC East Block DSA				Job no.	/44
Calcs for				Start page no./	Revision
Calcs by PMO	Calcs date 21/09/2015	Checked by	Checked date	Approved by	Approved date

BOLT GROUP ANALYSIS

TEDDS calculation version 1.0.00

Geometry of bolt group

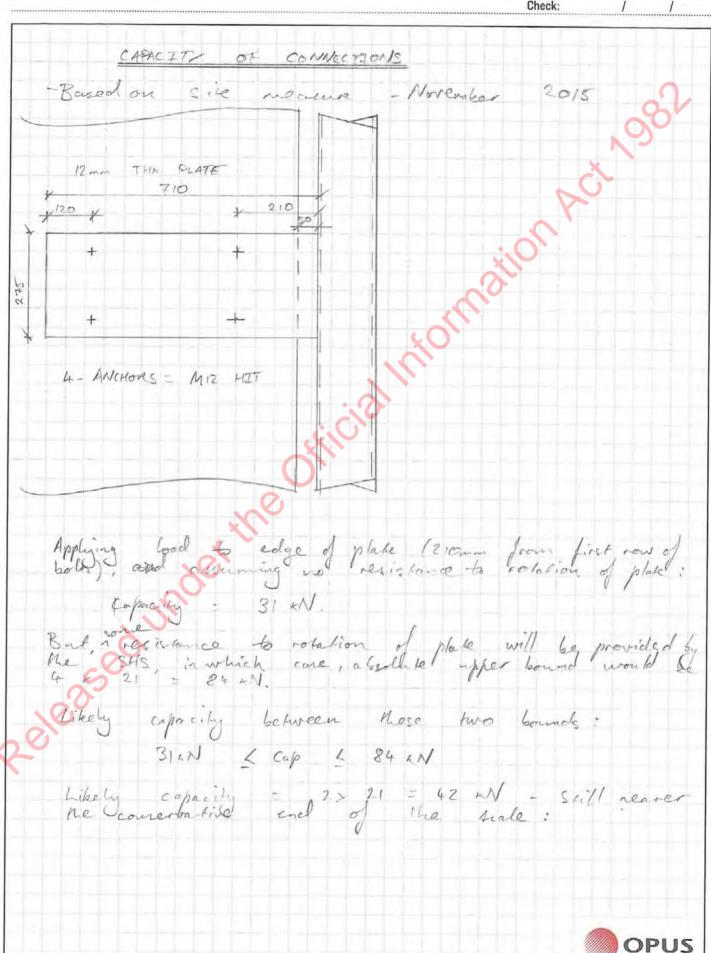
ocometry or boit group	
Number of rows	R = 2
Number of columns	C = 2
Pitch distance	S _x = 350 mm
Gauge distance	S _y = 150 mm
Edge distance in vertical direction	d _y = 75 mm
Edge distance in horizontal direction	d _x = 150 mm

Load data

Vertical load applied on bolt group	Py = 27.000 kN
Horizontal load applied on bolt group	$P_x = 0.000 \text{ kN}$
X coordinate of vertical force	X = -125 mm
Y coordinate of horizontal force	Y = 150 mm

Center of gravity of bolt group

X distance of center of bolt group	$X_c = ((C-1) \times S_x) / 2 + d_x = 325 \text{ mm}$
Y distance of center of bolt group	$Y_c = ((R - 1) \times S_y) / 2 + d_y = 150 \text{ mm}$


Load eccentricity from center of gravity of bolt group

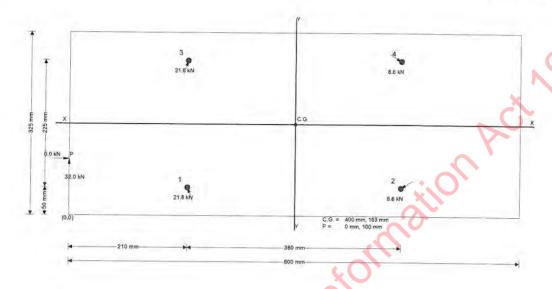
Eccentricity of vertical load from C.G.	$e_x = abs(X - X_c) = 450 \text{ mm}$
Eccentricity of horizontal load from C.G.	$e_y = abs(Y - Y_c) = 0 mm$
Moment about center of gravity	$M = P_x \times (Y - Y_c) - P_y \times (X - X_c) = 12.150 \text{ kNm}$

Bolt number	Bolt distance from centre of gravity		Direct shear		Torsional	shear	Total force
	X _i (mm)	Y _i (mm)	$P_{dx}(kN)$	$P_{dy}(kN)$	$P_{tx}(kN)$	$P_{ty}(kN)$	(kN)
1	-175	-75	0.0	-6.7	6.3	-14.7	22.3
2	175	-75	0.0	-6.7	6.3	14.7	10.1
3	-175	75	0.0	-6.7	-6.3	-14.7	22.3
4	175	75	0.0	-6.7	-6.3	14.7	10.1

***************************************	C FREE FOR	25	Shee	t No of
Project Description:			Offic	
	***************************************		Com	outed: PMO123/11/2015
			Office	<u>, </u>
ET 27/1/	E PETWEEN	DOTE SIAT	AND HARTS	nt tred .
1200	S CE WEEV	FLOOR OLIS	MON 12	2VIFE
Ralying only		anchors closes	f & 1/2	T 3 = 1
-61a E 1	2			
Capacity of	earl ancho	or - M2	41:16: 4127	= 16 8 +N Factored
= 1 = 1	0.0	16.8 -	2/ kN	
7 18 8			1.0	
	= 252	KN		
This is base	dor having	it's no	nie de in	the bolt group
so that	Le firing	cleats and	150 345 0	the bolt group, rould need to
to relative	CC and	not deform	dignificantly	
DEMAND				
× × -1				
CASI. Il X-Brac	es at hop f	loor one of	echine =	306 EN 22 = 612 K
2	te se	i not		532 KN/x2 = 1076+11
TOTAL	C/PACTOR S	= 552 KN	,	
		2 23 2 4 1		
	Care 1 =	225	- 90%	
		612		
		SS 2	- 5/%	
70.		1076		
CO				
20				

Project/Task/File No:	WEGC	EAST	BLOCK	Sheet No	(of
Project Description:				Office:		
	***************************************			Computed: 0	10 130	1112015
				Check:	1	1

		1	0	4
_		-	C	7
Ţ	E	90	O	S


Opus International Consultants Ltd

Majestic Centre, 100 Willis Street PO Box 12003, Wellington 6144 New Zealand

Project	WEGC CBF	Job no.	44 C		
Calcs for				Start page no./Revision	
Calcs by PMO	Calcs date 30/11/2015	Checked by	Checked date	Approved by	Approved date

BOLT GROUP ANALYSIS

TEDDS calculation version 1.0.00

 $d_x = 210 \text{ mm}$

Geometry of bolt group

Number of rowsR = 2Number of columnsC = 2Pitch distance $S_x = 380 \text{ mm}$ Gauge distance $S_y = 225 \text{ mm}$

Edge distance in vertical direction $d_y = 50 \text{ mm}$

Edge distance in horizontal direction

Load data

Vertical load applied on bolt group $P_y = 32.000 \text{ kN}$ Horizontal load applied on bolt group $P_x = 0.000 \text{ kN}$ X coordinate of vertical force $P_y = 32.000 \text{ kN}$ X coordinate of vertical force $P_y = 32.000 \text{ kN}$ Y coordinate of horizontal force $P_y = 32.000 \text{ kN}$

Center of gravity of bolt group

X distance of center of bolt group $X_c = ((C-1) \times S_x) / 2 + d_x = 400 \text{ mm}$ Y distance of center of bolt group $Y_c = ((R-1) \times S_y) / 2 + d_y = 163 \text{ mm}$

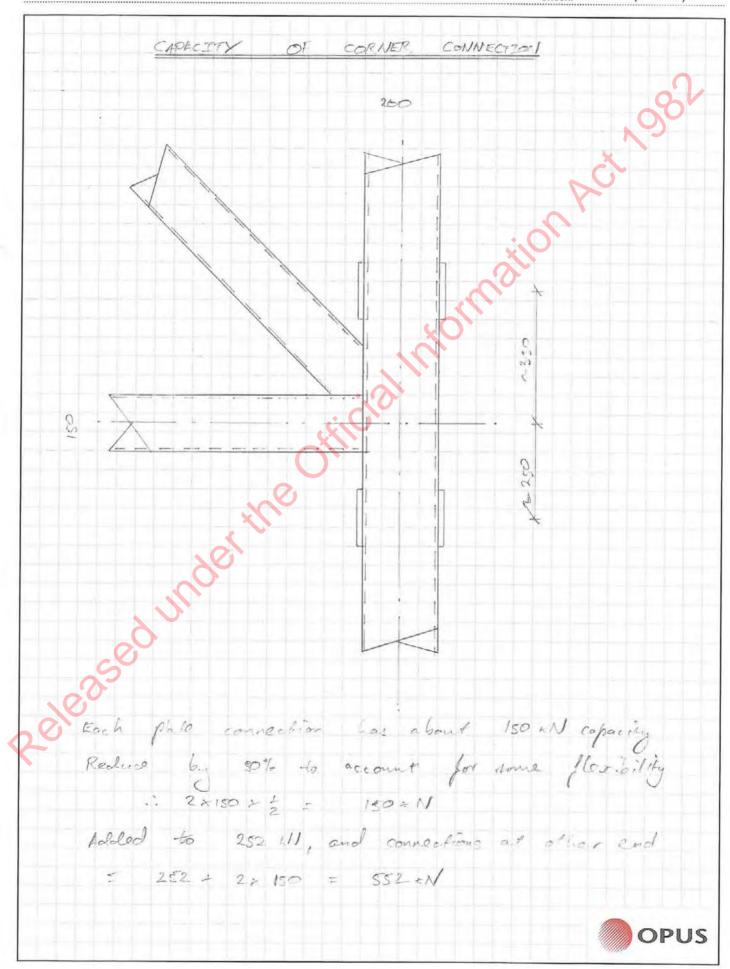
Load eccentricity from center of gravity of bolt group

Eccentricity of vertical load from C.G. $e_x = abs(X - X_c) = 400 \text{ mm}$ Eccentricity of horizontal load from C.G. $e_y = abs(Y - Y_c) = 63 \text{ mm}$

Moment about center of gravity $M = P_x \times (Y - Y_c) - P_y \times (X - X_c) = 12.800 \text{ kNm}$

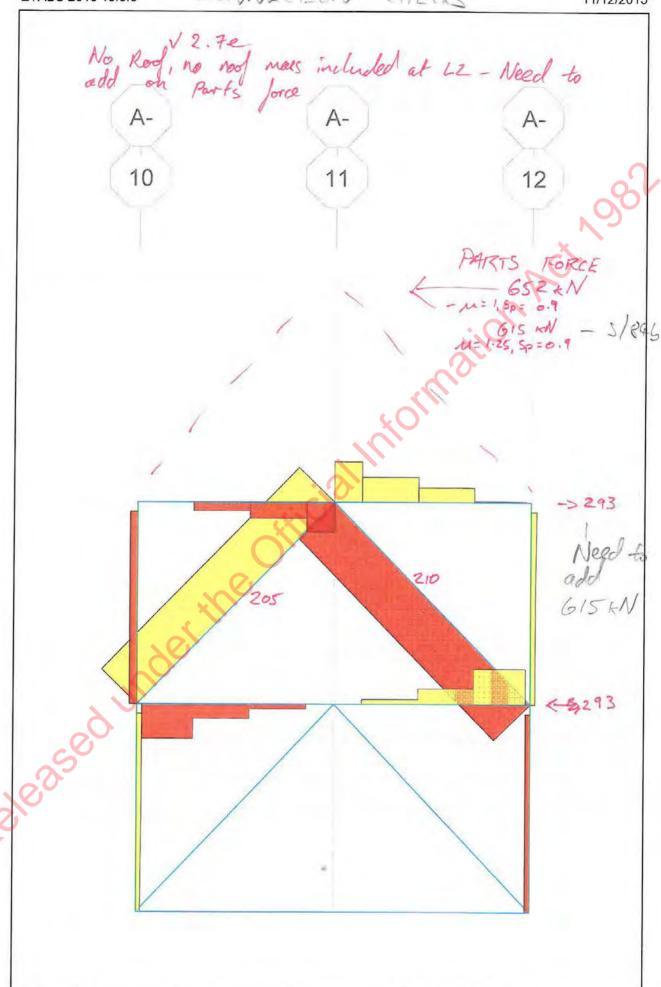
Bolt number	Bolt distan		Direct she	ar	Torsional:	shear	Total force
	X_i (mm)	Yi (mm)	$P_{dx}(kN)$	$P_{dy}(kN)$	$P_{tx}(kN)$	$P_{ty}(kN)$	(kN)
1	-190	-113	0.0	-8.0	7.4	-12.5	21.8
2	190	-113	0.0	-8.0	7.4	12.5	8.6
3	-190	113	0.0	-8.0	-7.4	-12.5	21.8
4	190	113	0.0	-8.0	-7.4	12.5	8.6

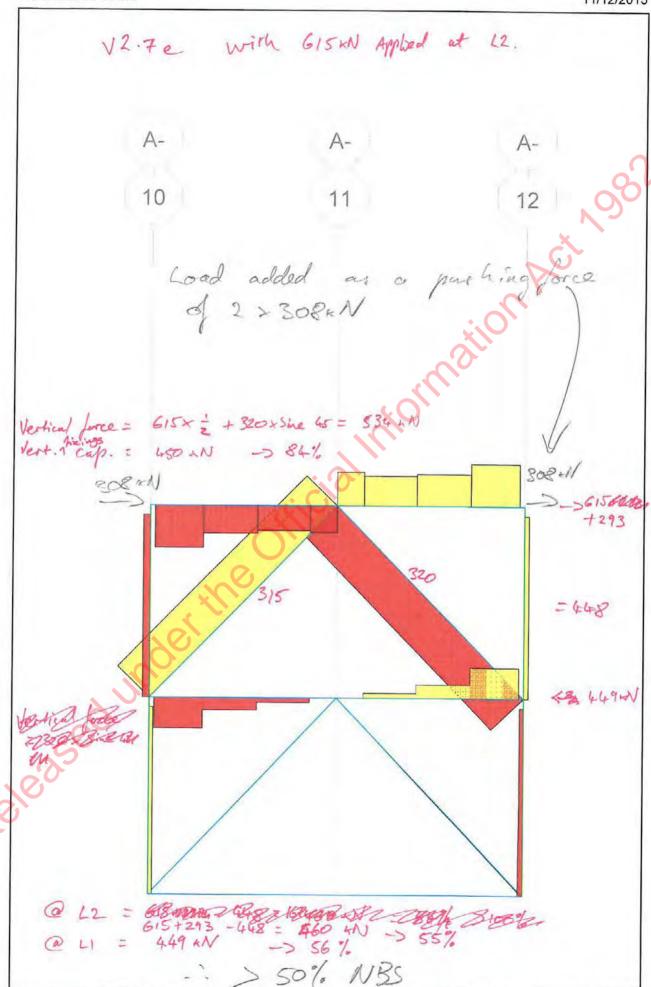
Task/File No: WELC EAST BLOCK	Sheet No	of
Description:	Office:	
	Computed: A	MO 19/09/20
	Check:	1 1
THE RESERVE OF THE PARTY OF THE		
COLUMN TO CEF COLUM	N CONNECTIONS	
2		
200×6 SHS column connected	above / balow floor.	to core. pl
- 5 02-1 Section 7:		Neg
350+ 150+ 12mm THE PLATE		
The state of the s		
11 x 4 x 1 3 1		
M20 Through - bolt.		
, 4000 - 98-11.		
	~~	
CAPACITY OF THE PLATES IN	BENDING:	
fy = 810 M/Pa		
M = bol : 5 = 150 x 12		1
Ma = bol' 5 = 150 x 12	x 320 = 1-73 +1/m	Place
2. Place 35 Wm		
A.F.		
IF: Hafe 1		
CB. 19.		
200 26 SHS H H Place 2		
FIGN		
\$ 200 A		
PLATE N		
Monter of himes = 2 lever arm = 10mm		
Cever asm = 10 mm		
7 F = 2 H - 2 1 1-72	21.6.1	
F= 24 = 22 1-73.	240 KM	
PLATE Z		
$F_2 = 2 + 1 = 2 \times 1.73 = 0.2$	17 KN - Small.	
0.2		
Check bolt:		
M20 Moongh bole.		
Lever arm: 190 mm		
Tension in bolt: 1.73	= 9 kN - O.K.	
		OPUS
	1111	ered .


CALCULATION SHEET Project/Task/File No: BLOCK WEGC EAST Sheet No. **Project Description:** Office: Computed: PMB 19/09/ 2015 Check: CHECK WELDS 6mm Lillet weld 326 411 Capacity of weld = 6 x 0.6 fm to = 6 x 0.6 x 480 x 1 = 1.22 x N/m Grade SR => 0.8 .. 0.8x 150 x 1.22 147 *N - Cnitical Weld failure on back of place to column connection like in critical. Capacity of connection around 150 KN SHEAR STREITS OF PLATE 0.6x 1501 12x 820 = 346 AN

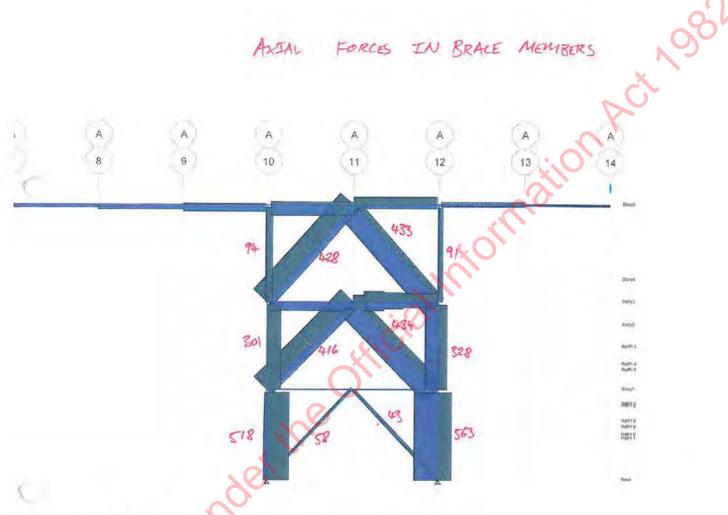
OPUS

CALCULATION SHEET WEGC Project/Task/File No: EAST BLOCK Sheet No. **Project Description:** Office: Computed: PMO19/09/2015 Check: IN 20016 8HS Connection between column & conc. pier would rely 6 504=11 1008 -N


OPUS

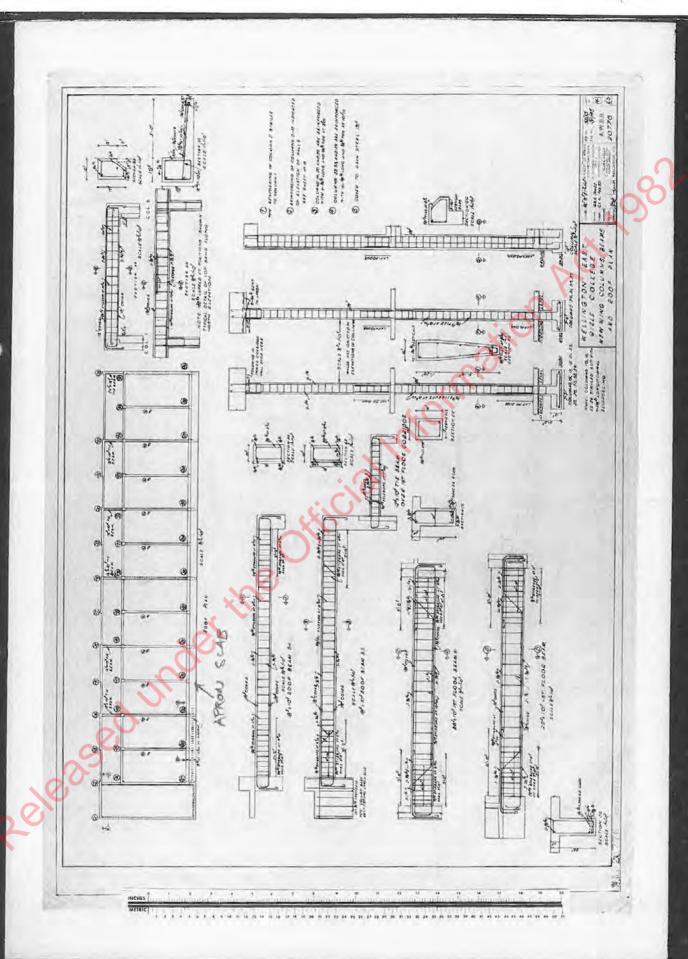

Project/Task/File No:	WEGC	EAST	SLOCK	Sheet No	of
Project Description:				Office:	
	***************************************			Computed: PMO 12	7/1/12015
				Check: /	1

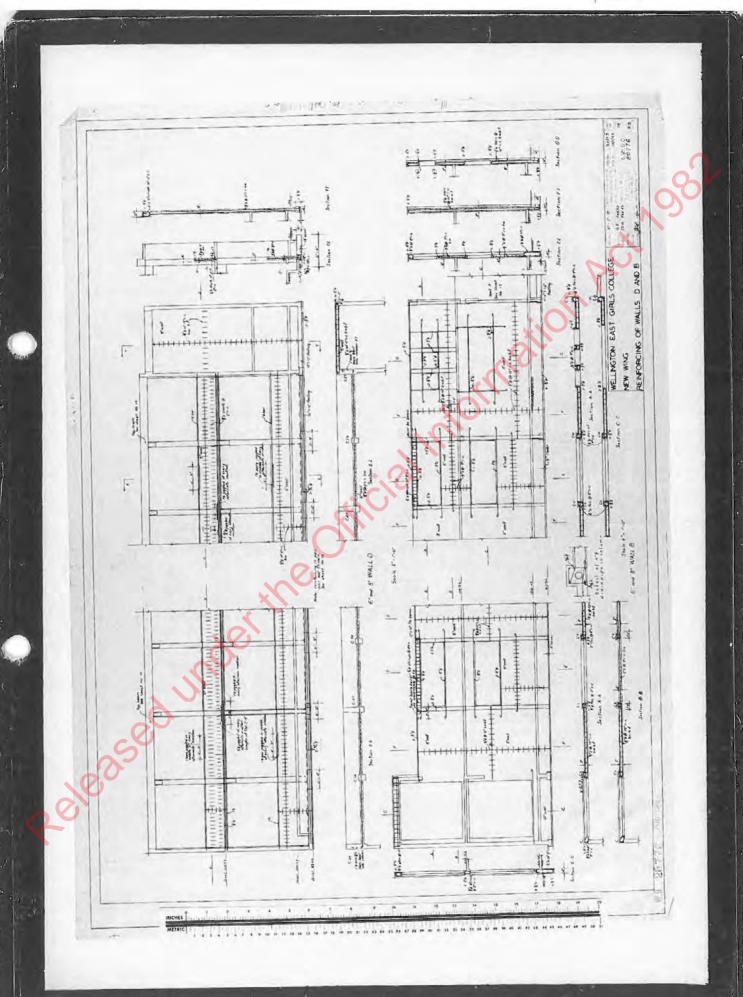
S/48


of 09/09/2013
2
2
oam will
oam will
Dam will
Dam will
oan will
oam will
ince
F.
1 1.21
de likely
d likely
· ·
like by
0
boly.
0
aps 225 H
una
ima
OPUS
14

East Hitchewation & Febra A- Axial Force Diagram (18b.DSL+EQX--0.3EQY-+Penthouse push) [kN]

CHECES ON BRACING MEMBERS


DIAG. BRACE CAPACITY: ON = 429 KN


COLUMN CAPACITY : PN_ = 1200 KN

-acceptable - Cokegory 3 demands.

. . O.k.

ALCULATION SHEET	3/31
ject/Task/File No: WEGC EAST BLOCK	Sheet No of
ject Description:	Office:
	Computed: MO19/09/12
	Check: / /
STRENGTH OF EXISTING CONCRE	TE AFRON - AT 2 nd FLC
Sixted of Contract	- 11.000 AT 2 FG
12" Bars@ 10" c/c E.W.	
2 tars(a) 10 t/c 2.10.	00'
Star Clasic almoster to the -	145 116
Sulean Capation along its length -	145 KN/m
Langth = 48.462	()
	0
Shear Capacity along its length = Length = 48.463m . Total Capacity = 7027 and	-O.K.
	0
	OPU

5/54

t/Task/File No: WEGC EAST BLOCK	Sheet No Office:	of
t Description:	Computed: PMO	111/09/2015
	<u> </u>	1 1
NORTH ELEVATION T-RAME CAPACITY FOR DEFORMS	77 04 /	
I-MANIE CAPACITY FOR DEFORM	(1201)	
		Ω
frame can be pushed emough.	amon most like	a p
frank car		
		•
CHECK ON CONUMNS		
Ground - 1st Floor		
	0	
Axiac LORD		
ROOF 3.5.5m2	~~	
0-35 x 4.032 x = 17.675 = 1 AN		
2nd Floor		
2 KP9 + 4.088 = = = 17.475 = 7		
2 KP + 4.088 + = + 17.475 = 71 0.81 3 + 4.088 + = + 17.475 = 32		
15 Floor 125		
4-11-6-0-1752 4-088+ 3-14-475 = 155		
0.32 3 + 4.038 > = 17.475 = 82		
271 *N		
Say Soo (1) / column in E.D.	care.	
Clear theight: 2.924m		
COLUMN TYPE 1 = 13" 4-1" Lo		
9 1 4-1 20	0 8" 1/1	
2 Tres	5 8 4	
Bending about minor appis:		
Mn = 112 EVm with 300 EV	ascial force	
	/	
Testing overstrength of 1.25: V* : 1-25 × 2×112 = 96 × N 2.924		
1+ 1-25 × 2×112 = 76 × N		
2.924		
		OPUS

WELCOME TO CONPROP(V 1.7) ** AN EXCEL SPREADSHEET FOR CALCULATINGGED : GEOMETRIC PROPERTIES & MOMENTS FOR CONCRETE SECTIONS UNDER UNCRACKED, CRACKED & ULTIMATE CONDITIONS.

[Flanges (top and/or bottom) and axial load are optional. For walls/columns see note 2 or the MANUAL.]

STEP 1 Describe the Uncracked Section...

(use consistent units.. e.g. N and mm through out the spreadsheet)

Project:		
	Date:	Time:
	11-Sep-15	12:21

305 Total Section depth (d) = 406 Web width (w) = Top flange width excluding web (b1) = 0 THESE 0 Top flange thickness (t) = 6 values Bottom flange width excluding web (b2) = 0 may Bottom flange thickness (b) = 0 be Axial compressive load (P) and, 300,000 zero 152.5 Depth from top surface of this load (di) Assumed tensile cracking stress (ft) 0 200,000 Steel Elastic Modulus (Es)

STEP 2 Describe steel sizes and locations.....

describe location of the centroid of up to 10 bar bundles from either the top or the bottom surface. Describe Location of each bundle from only one surface.

Modular ratio (n=Es*(1+Ct)/Ec) = 8

 $= E_s/E_c$

mm

mm

mm

mm

mm

mm

mm

N/mm2

N/mm2

N

	TOP BAR			воттом в	
No.	Bar	Distance	No of	Bar	Distance
Bars	Diam	From Top	Bars	Diam	From Bottom
		Surface	-		Surface
2	25.40	50.00	2	25.40	50.00
0	0.00	0.00		0.00	0.00
0	0.00	0.00	0	0.00	0.00
0	0.00	0.00	0	0.00	0.00
0	0.00	0.00	1 0	0.00	0.00
0	0.00	0.00	0	0.00	0.00
0	0.00	0.00	0	0.00	0.00
0	0.00	0.00	0	0.00	0.00
0	0.00	0.00	0	0.00	0.00
0	0.00	0.00	0	0.00	0.00
	3/6/926	'A JIMO			
	~~~				

Describe section properties for ULTIMATE conditions  (values entered in steps 1&2 may be varied for this part of the a			1
Concrete ultimate strain (e)	0.03		
Ratio of (stress block)/(N.A.) depths	0.85		
Axial compressive load (P) and,	300,000		
depth from top surface of this load (di)	152.5		1
Crack root tensile stress (say 0.5ft)	0.0		1
Concrete Elastic Modulus (Ec)	25,084		=332
Concrete compressive strength (f'c)	30		
Steel Elastic Modulus (Es)	200,000		
Steel Yield Stress (Fy)	245		U
J. 1000 1.100 J. 1/1.100 J. 1/1.1			-
Analysis results shown below correspond to the conditions that e	xist	X	
when the peak compression strain equals (e) given above. A re-	ectangular		
stress block with average stress=0.85f'c is assumed.			
		Y	
S FOR ULTIMATE MOMENT SECTION ANALYSIS:		*iOl'	
(a) CRACK PROPAGATING FROM BOTTOM	9 41F+01	ilol'	
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	9.41E+01 2.45E+02	ilol'	
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02	ijol'	
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)  Steel Stress (Maximum Tension)  Crack Depth	2.45E+02 2.11E+02	Ratio T/C =	
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)  Steel Stress (Maximum Tension)  Crack Depth  Total Tension Force (including P)	2.45E+02 2.11E+02 5.48E+05	Ratio T/C = 0.522	M
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02 2.11E+02	0.522	
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02 2.11E+02 5.48E+05 1.05E+06		11
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02 2.11E+02 5.48E+05 1.05E+06 1.12E+08	0.522 (=1.0 for iteration	11 0N
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02 2.11E+02 5.48E+05 1.05E+06 1.12E+08	0.522 (=1.0 for iteration	М 11 0М 9:
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02 2.11E+02 5.48E+05 1.05E+06 1.12E+08 3.19E-04	0.522 (=1.0 for iteration	11 θN 9
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02 2.11E+02 5.48E+05 1.05E+06 1.12E+08 3.19E-04	0.522 (=1.0 for iteration	11 θN 9
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02 2.11E+02 5.48E+05 1.05E+06 1.12E+08 3.19E-04 9.41E+01 2.45E+02	0.522 (=1.0 for iteration	11 θN 9
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02 2.11E+02 5.48E+05 1.05E+06 1.12E+08 3.19E-04 9.41E+01 2.45E+02 2.11E+02	0.522 (=1.0 for iteration convergence)	11 θN 9
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02 2.11E+02 5.48E+05 1.05E+06 1.12E+08 3.19E-04 9.41E+01 2.45E+02 2.11E+02 5.48E+05	0.522 (=1.0 for iteration convergence)	11 0N 9 KN
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02 2.11E+02 5.48E+05 1.05E+06 1.12E+08 3.19E-04 9.41E+01 2.45E+02 2.11E+02 5.48E+05 1.05E+06	0.522 (=1.0 for iteration convergence)  Ratio T/C = 0.522	111 0N 9 KN
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02 2.11E+02 5.48E+05 1.05E+06 1.12E+08 3.19E-04 9.41E+01 2.45E+02 2.11E+02 5.48E+05	0.522 (=1.0 for iteration convergence)	111 ΘM 9 KN
(a) CRACK PROPAGATING FROM BOTTOM  Depth to N.A.(zero stress) from top (c)	2.45E+02 2.11E+02 5.48E+05 1.05E+06 1.12E+08 3.19E-04 9.41E+01 2.45E+02 2.11E+02 5.48E+05 1.05E+06	0.522 (=1.0 for iteration convergence)  Ratio T/C = 0.522	111 0N 9 KN

	Column Type 1:	GF-1St				
	Clear height			2.924 m		
	D	12 in	=	305 mm		
	b	16 in	=	406.4 mm		
	Cover	1.5 in	=	38 mm		
	Ties	0.38 in	_	9.525 mm		
	Number	2	= -	2 Bars		
	Spacing	8 in	=	203 mm		
	Main Bars	1 in	=	25 mm		
	Effective depth			282.575 mm		
	Concrete f'c			30 MPa		
	Steel yield fy			245 MPa		
	Mn top			112 kNm	(From Conprop)	70
	Mn Bottom			112 kNm	(From Conprop)	
	Overstrength fac			1.25		
	$V_o^* = OS \times (Mn_{to})$	_{op} +Mn _{botto}	_{om} )/h _{cl}	96 kN		O'
	Axial load N			300 kN	(Compression only	4)
haan C	- was alter. A consequence				100	
	apacity Assessmer 1 Method	<u>1t</u>				
0-11	Vb = 0.2x (sqrtf'd	c) x bd		126 kN	KO.	
0-14	kn	-/		1.24	(Equation works fo	or compression only)
0 1 1	Vc			156 kN	1-1-2-1-1	ii gailifeannaisaniii
0-7	Vs = Avfvtd/s					
0-7 .3.2.2	Vs = Avfytd/s Safety factor			49 kN 0.75		
				49 kN	ОК	
.3.2.2	Safety factor Vp			49 kN 0.75	ОК	
.3.2.2	Safety factor Vp 2006 Method			49 kN 0.75 154 kN	ОК	
.3.2.2 ZSEE 2	Safety factor Vp  2006 Method k		· · · · · · · · · · · · · · · · · · ·	49 kN 0.75 154 kN 0.29	ОК	
.3.2.2 ZSEE 2	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)	x bd	il.	49 kN 0.75 154 kN 0.29 182 kN	ОК	
.3.2.2 ZSEE 2 (7)	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"	1	in	49 kN 0.75 154 kN 0.29 182 kN 219 mm	ОК	
.3.2.2	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3	1	in	0.29 182 kN 219 mm 65 kN	ОК	
.3.2.2   <b>ZSEE 2</b>   (7)	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3  Alpha	80/s	ins	49 kN 0.75 154 kN 0.29 182 kN 219 mm 65 kN 0.130	ОК	
.3.2.2 IZSEE 2 (7) (9) (10)	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3  Alpha  Vn = N* x tan(al)	80/s	ille	49 kN 0.75 154 kN 0.29 182 kN 219 mm 65 kN 0.130 39 kN	ОК	
.3.2.2   <b>ZSEE 2</b>   (7)	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3  Alpha  Vn = N* x tan(al)  Safety factor	80/s		49 kN 0.75 154 kN 0.29 182 kN 219 mm 65 kN 0.130 39 kN 0.72		
.3.2.2 IZSEE 2 (7) (9) (10)	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3  Alpha  Vn = N* x tan(al)	80/s		49 kN 0.75 154 kN 0.29 182 kN 219 mm 65 kN 0.130 39 kN	ОК	
.3.2.2 IZSEE 2 (7) (9) (10)	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3  Alpha  Vn = N* x tan(al)  Safety factor	80/s	in	49 kN 0.75 154 kN 0.29 182 kN 219 mm 65 kN 0.130 39 kN 0.72		
.3.2.2 IZSEE 2 (7) (9) (10) (6)	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3  Alpha  Vn = N* x tan(al)  Safety factor  Vp	oha)		49 kN 0.75 154 kN 0.29 182 kN 219 mm 65 kN 0.130 39 kN 0.72 207 kN		
.3.2.2 IZSEE 2 (7) (9) (10)	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3  Alpha  Vn = N* x tan(al)  Safety factor  Vp	oha)		49 kN 0.75 154 kN 0.29 182 kN 219 mm 65 kN 0.130 39 kN 0.72 207 kN		
.3.2.2 ZSEE 2 (7) (9) (10) (6)	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3  Alpha  Vn = N* x tan(al)  Safety factor  Vp  k  Vc = K x (sqrtf'c)	oha) x bd		49 kN 0.75 154 kN 0.29 182 kN 219 mm 65 kN 0.130 39 kN 0.72 207 kN		
.3.2.2 IZSEE 2 (7) (9) (10) (6)	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3  Alpha  Vn = N* x tan(al)  Safety factor  Vp  k  Vc = K x (sqrtf'c)  d"	oha) x bd		49 kN 0.75 154 kN 0.29 182 kN 219 mm 65 kN 0.130 39 kN 0.72 207 kN 0.2 126 kN 219 mm		
.3.2.2 ZSEE 2 (7) (9) (10) (6)	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3  Alpha  Vn = N* x tan(al)  Safety factor  Vp   Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3	x bd		49 kN 0.75 154 kN 0.29 182 kN 219 mm 65 kN 0.130 39 kN 0.72 207 kN 0.2 126 kN 219 mm 65 kN		
.3.2.2 ZSEE 2 (7) (9) (10) (6)	Safety factor  Vp  2006 Method  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3  Alpha  Vn = N* x tan(al)  Safety factor  Vp  k  Vc = K x (sqrtf'c)  d"  Vs = Avfytd"cot3  Alpha	x bd		49 kN 0.75 154 kN 0.29 182 kN 219 mm 65 kN 0.130 39 kN 0.72 207 kN 0.2 126 kN 219 mm 65 kN 0.130		

7(7)

7(9)

7(10) 7(6)

CALCULATION SHEET	S	158
Project/Task/File No: WEGC EAST BLOCK	Sheet No	of
Project Description:	Office:	
	Computed: A	10/14/09/20
	Check:	1 1
FIN COLUMNS		
686,236		
51 254		ON
0,805		O
317,254		1
317,51	X	
0,0 51,51 368,0 7 1 1321, 57		
686,69 1003,87		
a = 3/4" Vertical		
	0,	
O'		



# WELLINGTON EAST GIRLS' COLLEGE - EAST BLOCK





Total no. of points

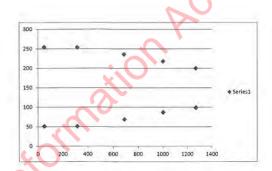
7	
.0	.0
368	0
1371	51
1321	254
368	305
0.	305
.0:	.0
0	0
U	0
0	

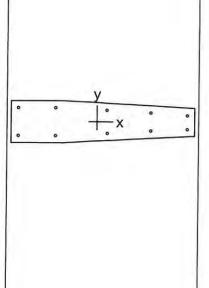
Number of openings

	of Bars
*Ac	ld more
cell	s at the bottom
if re	quired

No. of Bars	Table 2 Reo Area and Coordinate	es [	Table 5. Reo Area and Transformed
*Add more cells at the bottom if required	285 51 5 285 317 5 285 689 6 285 1003 8 285 1270 9 285 1270 20 285 1003 21 285 1003 21 285 686 23 285 317 25 285 51 25	1 9 7 9 0 8 8 6	285 -562.47 -101.5 285 -296.47 -101.5 285 75.53 -88.5 285 389.53 -65.5 285 656.53 -53.5 285 656.53 47.5 285 389.53 65.5 285 72.53 83.5 285 72.53 83.5 285 296.47 101.5 285 -562.47 101.5
(		4	285 -562.47 101.5
			ببزاذ
	area x-coord y-coord		6
C-		derti	
	-dur		
	380		
Sele			

Table 3. Coordinates for Center of mass (from spColumn)


613.47 152.5


Table 4. Transformed Section Coordinates

7	
-613.47	-152.5
-245.47	-152.5
707.53	-101.5
707.53	101.5
-245.47	152.5
-613.47	152.5
-613.47	-152.5
-613.47	-152.5
-613.47	-152.5
0	

ordinates

10		
285	-562.47	-101.5
285	-296.47	-101.5
285	75.53	-83.5
285	389.53	-65.5
285	656,53	-53.5
285	656.53	47.5
285	389.53	65.5
285	72.53	83.5
285	-296.47	101.5
285	-562.47	101.5





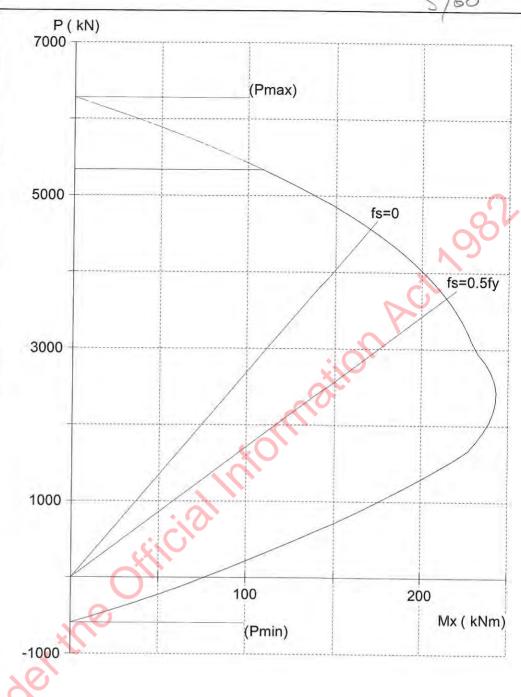
1321 x 305 mm

Code: ACI 318-11

Units: Metric

Run axis: About X-axis

Run option: Investigation


Slenderness: Not considered

Column type: Structural

Bars: ASTM A615

Date: 09/14/15

Time: 14:34:55



spColumn v4.81. 15 day trial license. Locking Code: 4-2D135. User: Opus, Opus International Consultants

File: P:\projects\5-PA010.00 MOE Seismic Panel Agreement to Assess Public Buildings\10 Structura...\fin column.col

Project:

Column:

f'c = 30 MPa

fy = 245 MPa

Ec = 25084 MPa

Es = 200000 MPa

fc = 25.5 MPa

e_u = 0.003 mm/mm

Beta1 = 0.85

Confinement: Other

phi(a) = 0.85, phi(b) = 0.85, phi(c) = 0.65

Engineer:

Ag = 354302 mm²

10 bars

 $As = 2850 \text{ mm}^2$ 

rho = 0.80%

Xo = 0 mm

lx = 2.22e+009 mm^4

Yo = -0 mm

ly = 4.96e+010 mm^4

Min clear spacing = 82 mm

Clear cover = N/A

Page 1 09/14/15 02:16 PM

				000	0000			0										
				00	00			00										
000	000	0000	000	00		000	000	00		00	00	0 000	00000	000	0 000	000		
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00		
00		00	00	00		00	00	00		00	00	00	00	00	00	00		1
000	000	00	00	00		00	00	00		00	00	00	00	00	00	00		
	00	0000	000	00		00	00	00		00	00	00	00	00	00	00		
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00		)
000	000	00		000	000	000	000	00	0	000	0 000	00	00	00	00	00	(TM)	

spColumn v4.81 (TM)

Computer program for the Strength Design of Reinforced Concrete Sections
Copyright © 1988-2012, STRUCTUREPOINT, LLC.

All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Released under the Paleased under the

#### General Information:

-----------------

File Name: P:\projects\5-PA010.00 MOE Seismic Panel Agreement to Assess Public Bui...\fin column.col

Project:

Column: ACI 318-11 Code:

Engineer: Units: Metric

Run Option: Investigation

Slenderness: Not considered

Run Axis: X-axis

Column Type: Structural

Material Properties: ---------------

f'c = 30 MPa= 25084 MPa EC

= 245 MPa fy

Ultimate strain = 0.003 mm/mm

Beta1 = 0.85

Es = 200000 MPa

#### Section:

------

Exterior	Points
----------	--------

No.	X (	mm)	Y	(mm)	No.	X	(mm)	Y	(mm)	No.	X	(mm)	Y	(mm)
								ACKEDS.			12-120			
1		613		-153	2		-245		-153	3		708		-102
4		708		102	5		-245		153	6		-613		153

Gross section area, Ag = 354302 mm²

 $Ix = 2.22397e+009 \text{ mm}^4$ 

 $Iy = 4.9642e + 010 \text{ mm}^4$ 

79.2278 mm rx =

ry = 374.315 mm

Xo = 0.000298458 mm

Yo = -1.00158e-006 mm

#### iforcement: -----------

Bar Set: ASTM A615

S	ize	Diam (mm)	Area (mm^2)	S	ize	Diam (mm)	Area (	(mm^2)	S	ize	Diam	(mm)	Area	(mm^2)
-				-					-					
#	3	10	71	#	4	13		129	#	5	C	16		200
#	6	19	284	#	7	22		387	#	8		25		510
#	9	29	645	#	10	32		819	#	11		36		1006
#	14	43	1452	#	18	57		2581						

Confinement: Other; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.85, phi(b) = 0.85, phi(c) = 0.65

Pattern: Irregular

Total steel area: As = 2850 mm^2 at rho = 0.80% (Note: rho < 1.0%)

Minimum clear spacing = 82 mm

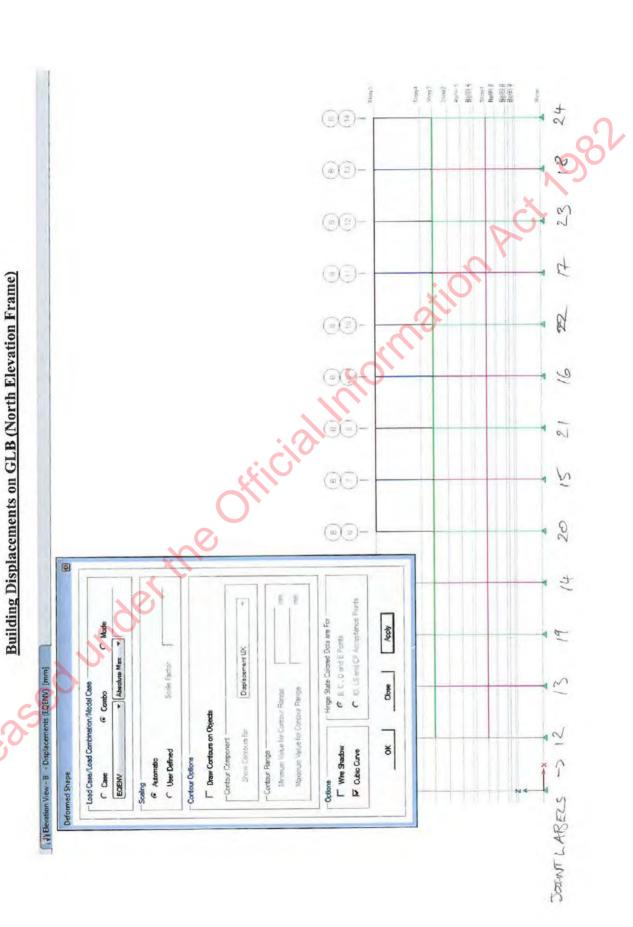
Area mm^2	X (mm)	Y (mm)	Area mm^2	X (mm)	Y (mm)	Area mm^2	X (mm)	Y (mm)
							10-11-66	
285	-562	-102	285	-296	-102	285	76	-84
285	390	-66	285	657	-54	285	657	48
285	390	66	285	73	84	285	-296	102
285	-562	102						2.56

### Axial Load and Corresponding Moment Capacities:

)ad No.	PhiPn kN	PhiMnx N	A depth I	ot depth	eps_t	Phi
3-44	******					200000
1	-0.0	76.28	42	254	0.01523	0.850
		-77.00	42	254	0.01523	0.850
2	25.0	79.09	43	254	0.01484	0.850
		-79.80	43	254	0.01484	0.850
3	50.0	81.88	44	254	0.01447	0.850
		-82.59	44	254	0.01447	0.850
4	75.0	84.66	45	254	0.01411	0.850
		-85.37	45	254	0.01411	0.850
5	100.0	87.43	45	254	0.01377	0.850
		-88.14	45	254	0.01377	0.850
6	125.0	90.19	46	254	0.01344	0.850
		-90.90	46	254	0.01344	0.850
7	150.0	92.94	47	254	0.01312	0.850
V		-93.65	47	254	0.01312	0.850
8	175.0	95.67	48	254	0.01281	0.850
		-96.38	48	254	0.01281	0.850
9	200.0	98.38	49	254	0.01252	0.850
		-99.10	49	254	0.01252	0.850
10	225.0	101.02	50	254	0.01227	0.850

		-101.73	50	254	0.01227	0.850
11	250.0	103.64	51	254	0.01203	0.850
		-104.35	51	254	0.01203	0.850
12	275.0	106.25	51	254	0.01180	0.850
		-106.96	51	254	0.01180	0.850
13	300.0	108.86	52	254	0.01157	0.850
		-109.57	52	254	0.01157	0.850

*** End of output ***


Released under the Official Information Act 1982

	Colours Color III	2200					
	Column Type 2:	GF-1st					
	Clear height			2.924 m			
	D	12 in		250 mm			
	b	16 in		1321 mm			
	Cover	1.5 in		38 mm			
	Ties	0.38 in		9.525 mm			
	Number	2	=	2 Bar			
	Spacing	8 in		203 mm			
	Main Bars	1 in	=	25 mm			
	Effective depth			227.775 mm			N
	Concrete f'c			30 MP			
	Steel yield fy			245 MP			
	Mn top			129 kNr		Conprop)	
	Mn Bottom			129 kNr	n (From	Conprop)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Overstrength fac		17	1.25			11
	$V_o^* = OS \times (Mn_{to})$	+Mn _{botto}	m)/h _{cl}	110 kN			<b>J</b> .
	Axial load N			300 kN	(Comp	ression only)	
near C	apacity Assessmer	nt					
	1 Method						
0-11	Vb = 0.2x (sqrtf'c	x bd		330 kN	N/C		
0-14	kn			1.09	(Equati	on works for	compression only)
	Vc			360 kN			
0-7	Vs = Avfytd/s			39 kN			
3.2.2	Safety factor			0.75			
	Vp			299 kN	ОК		
7SFF 2	2006 Method			0			
	k		_0	0.29			
7)	Vc = K x (sqrtf'c)	x bd	10	478 kN			
. ,	d"			164 mm			
9)	Vs = Avfytd"cot3	0/s		49 kN			
-,	Alpha	0		0.130			
10)	Vn = N* x tan(alp	ha)		39 kN			
6)	Safety factor			0.72			
	Vp			408 kN	ОК		
	60						
	k .			0.2			
7)	Vc = K x (sqrtf'c)	x bd		330 kN			
	d"			164 mm			
9)	Vs = Avfytd"cot3	0/s		49 kN			
	Alpha	0.5.2		0.130			
10)	Vn = N* x tan(alp	ha)		39 kN			
5)	Safety factor			0.72			
	Vp			301 kN	ОК		

5/65 **CALCULATION SHEET** WEGE EAST BLOCK Project/Task/File No: Sheet No **Project Description:** Office: Computed: PMO 114/0912015 Check: CHECK COLUMNI-TIE SPACING 16" x 12" COLUMNS · Pent about minor areis: d= 255 mm 8" = 208 mar 1" \$ -> 5: Boly NESEE 2006: ME 2 can be assumed. FIN COLUMNS d ~ 200 - Average. Sin spacina ex. assumed describing capacity in= 2

**OPUS** 

ct/Task/File No: WEGE FAT BLOCK	Sheet No	of
ct Description:	Office:	
	***************************************	MO 17/101:
	Check:	1 1
FRAME ON A R MINARY	markey all to	
- COD nevert mande for a los	ELEVATION) DIS	SPLACENIEN
- See nesof pages for analysis.  AT 1st FLOOR for analysis.		
		-45
Model output indicates very	small displace	men As a
Model output indicates very this line for both the x'a	nd & directions	
Marie al la	10010	
Max = n Imm in each	direction.	
Ly By inspection - not	continued of	
39	- Fre (Car	
	XIV I	
AT 2 nd FLOOR		
splacements along x direction &	10mm nease	
	- 17 mm mas	
Storey Loinhe = 4.147mm	alollo Aine	
	and the most	
10 Drift = 0.4%		
Scaling for ductioning -> × 1.	25 = 0.5%	
- Well within limits.		
R. inchortion	11. 4 0.	0 10
By inspected, columns are a expected drifts without much	la il au decomo	norlance
	i, of any, dance	ge.
2,0		



									/
Story	Label	Unique Name	Load Case/Com	ux	UY	UZ	RX	RY	RZ
Story3	13	14	EQENV Max	8.2	9.2	-0.3	0.0	0.0	0.0
Story3	13	14	EQENV Min	-3.6	-7.5	-0.4	0.0	0.0	0.0
Story1	13	37	EQENV Max	0.6	0.8	-0.3	0.0	0.0	0.0
Story1	13	37	EQENV Min	-0.1	-0.3	-0.3	0.0	0.0	0.0

Paleased under the Official Information Act, 1982

										1
	Story	Label	Unique Name	Load Case/Com	UX	UY	UZ	RX	RY	RZ
S	tory3	19	18	EQENV Max	8.5	13.1	0.4	0.0	0.0	0.0
S	tory3	19	18	EQENV Min	-3.7	-5.2	-1.9	0.0	0.0	0.0
St	tory1	19	43	EQENV Max	0.6	0.8	-0.1	0.0	0.0	0.0
S	tory1	19	43	EQENV Min	-0.1	-0.3	-1.0	0.0	0.0	0.0

Released under the Official Information Act Age

Story	Label	Unique Load Name Case/Com	UX	UY	UZ	RX	RY	RZ	
Story3	14	113 EQENV Max	8.8	17.9	0.0	0.0	0.0	0.0	
Story3	14	113 EQENV Min	-3.7	-4.5	-0.2	0.0	0.0	0.0	
Story1	14	38 EQENV Max	0.6	0.8	0.0	0.0	0.0	0.0	
Story1	14	38 EQENV Min	-0.1	-0.3	-0.2	0.0	0.0	0.0	

Paleased under the Official Information not a second and a second and

1

								1	
Story	Label	Unique Name	Load Case/Com	ux	UY	UZ	RX	RY	RZ
Story3	20	26	EQENV Max	9.1	18.7	0.1	0.0	0.0	0.0
Story3	20	26	EQENV Min	-3.7	-3.8	-2.5	0.0	0.0	0.0
Story1	20	44	EQENV Max	0.6	0.8	-0.2	0.0	0.0	0.0
Story1	20	44	EQENV Min	-0.1	-0.3	-1.3	0.0	0.0	0.0

Paleased under the Official Information Act Not Released under the Official Information Act Not Release and Information Act No

Story	Label	Unique Load Name Case/Com	UX	UY	UZ	RX	RY	RZ	
Story3	15	31 EQENV Max	9.4	9.8	-0.4	0.0	0.0	0.0	
Story3	15	31 EQENV Min	-3.7	-2.0	-0.4	0.0	0.0	0.0	
Story1	15	39 EQENV Max	0.6	0.8	-0.3	0.0	0.0	0.0	١
Story1	15	39 EQENV Min	-0.1	-0.2	-0.3	0.0	0.0	0.0	
	Story3 Story3 Story1	Story3       15         Story3       15         Story1       15	Story         Label         Name         Case/Com           Story3         15         31         EQENV Max           Story3         15         31         EQENV Min           Story1         15         39         EQENV Max           Story1         15         39         EQENV	Story         Label         Name         Case/Com         UX           Story3         15         31 EQENV Max         9.4           Story3         15         31 EQENV Min         -3.7           Story1         15         39 EQENV Max         0.6           Story1         15         39 EQENV Max         -0.1	Story         Label         Name         Case/Com         UX         UY           Story3         15         31 EQENV Max         9.4         9.8           Story3         15         31 EQENV Min         -3.7         -2.0           Story1         15         39 EQENV Max         0.6         0.8           Story1         15         39 EQENV COLD         -0.1         -0.2	Story         Label         Name         Case/Com         UX         UY         UZ           Story3         15         31 EQENV Max         9.4         9.8         -0.4           Story3         15         31 EQENV Min         -3.7         -2.0         -0.4           Story1         15         39 EQENV Max         0.6         0.8         -0.3           Story1         15         39 EQENV Max         -0.1         -0.2         -0.3	Story         Label         Name         Case/Com         UX         UY         UZ         RX           Story3         15         31 EQENV Max         9.4         9.8         -0.4         0.0           Story3         15         31 EQENV Min         -3.7         -2.0         -0.4         0.0           Story1         15         39 EQENV Max         0.6         0.8         -0.3         0.0           Story1         15         39 EQENV -0.1         -0.2         -0.3         0.0	Story         Label         Name         Case/Com         UX         UY         UZ         RX         RY           Story3         15         31 EQENV Max         9.4         9.8         -0.4         0.0         0.0           Story3         15         31 EQENV Min         -3.7         -2.0         -0.4         0.0         0.0           Story1         15         39 EQENV Max         0.6         0.8         -0.3         0.0         0.0           Story1         15         39 EQENV         -0.1         -0.2         -0.3         0.0         0.0	Story         Label         Name         Case/Com         UX         UY         UZ         RX         RY         RZ           Story3         15         31         EQENV Max         9.4         9.8         -0.4         0.0         0.0         0.0           Story3         15         31         EQENV Min         -3.7         -2.0         -0.4         0.0         0.0         0.0           Story1         15         39         EQENV Max         0.6         0.8         -0.3         0.0         0.0         0.0           Story1         15         39         EQENV EQENV         -0.1         -0.2         -0.3         0.0         0.0         0.0

Released under the Official Information Act 1982

5/73

Chami	Label	Unique	Load	UX	UY	UZ	RX	RY	RZ
Story	Label	Name	Case/Com	J.	30	42			
Story3	21	281	EQENV Max	9.7	2.1	0.3	0.0	0.0	0.0
Story3	21	281	EQENV Min	-3.9	-0.5	-0.2	0.0	0.0	0.0
Story1	21	45	EQENV Max	0.6	0.9	0.2	0.0	0.0	0.0
Story1	21	45	EQENV Min	-0.1	-0.2	-0.2	0.0	0.0	0.0

Paleased under the Official Information net No.

Story	Label	Unique Name	Load Case/Com	UX	UY	UZ	RX	RY	RZ
Story3	16	36	EQENV Max	9.9	10.8	-0.4	0.0	0.0	0.0
Story3	16	36	EQENV Min	-4.1	-2.8	-0.4	0.0	0.0	0.0
Story1	16	40	EQENV Max	0.6	1.0	-0.3	0.0	0.0	0.0
Story1	16	40	EQENV Min	-0.1	-0.2	-0.3	0.0	0.0	0.0

Paleased under the Official Information Act 1898

S/75

								1		
Story	Label	Unique Name	Load Case/Com	ux	UY	UZ	RX	RY	RZ	
Story3	22	107	EQENV Max	10.1	19.5	0.3	0.0	0.0	0.0	
Story3	22	107	EQENV Min	-4.1	-4.8	-2.7	0.0	0.0	0.0	
Story1	22	46	EQENV Max	0.6	1.0	-0.2	0.0	0.0	0.0	
Story1	22	46	EQENV Min	-0.1	-0.2	-1.5	0.0	0.0	0.0	

Released under the Official Information Act, 1882

5/76

								/		
Story	Label	Unique Name	Load Case/Com	UX	UY	UZ	RX	RY	RZ	
Story3	17	109	EQENV Max	10.2	21.7	-0.3	0.0	0.0	0.0	
Story3	17	109	EQENV Min	-4.0	-5.9	-0.4	0.0	0.0	0.0	
Story1	17	41	EQENV Max	0.6	1.1	-0.3	0.0	0.0	0.0	
Story1	17	41	EQENV Min	-0.1	-0.2	-0.3	0.0	0.0	0.0	

Released under the Official Information Act of Release and Information Act of Releas

								8/-	7+7
Story	Label	Unique Name	Load Case/Com	ux	UY	UZ	RX	RY	RZ
Story3	23	117	EQENV Max	10.3	17.1	0.4	0.0	0.0	0.0
Story3	23	117	EQENV Min	-4.0	-4.7	-2.0	0.0	0.0	0.0
Story1	23	47	EQENV Max	0.6	1.1	0.0	0.0	0.0	0.0
Story1	23	47	EQENV Min	-0.1	-0.2	-0.1	0.0	0.0	8.60

Released under the Official Information Act 1980

Ž.

		8/7	9	
UZ	RX	RY	RZ	
-0.3	0.0	0.0	0.0	
-0.4	0.0	0.0	0.0	

0.0

0.0

y.				ation
		i Ci Ci R	dinio	
		Us Office		
X I	Junder			
Releas	edunder			

Unique

Name

111

111

42

Story

Story3

Story3

Story1

Story1

Label

18

18

18

18

Load

Case/Com **EQENV** 

Max EQENV

Min **EQENV** 

Max

EQENV Min

UX

10.3

-4.0

0.6

-0.1

UY

11.1

-3.0

1.2

-0.2

-0.2

-0.3

0.0

0.0

5/79

Story	Label	Unique Name	Load Case/Com	ux	UY	UZ	RX	RY	RZ
Story3	24	279	EQENV Max	10.4	2.3	0.4	0.0	0.0	0.0
Story3	24	279	EQENV Min	-4.0	-0.2	-0.1	0.0	0.0	0.0
Story1	24	48	EQENV Max	0.6	1.3	0.3	0.0	0.0	0.0
Story1	24	48	EQENV Min	-0.1	-0.2	-0.1	0.0	0.0	0.0

Released under the Official Information Act 1990

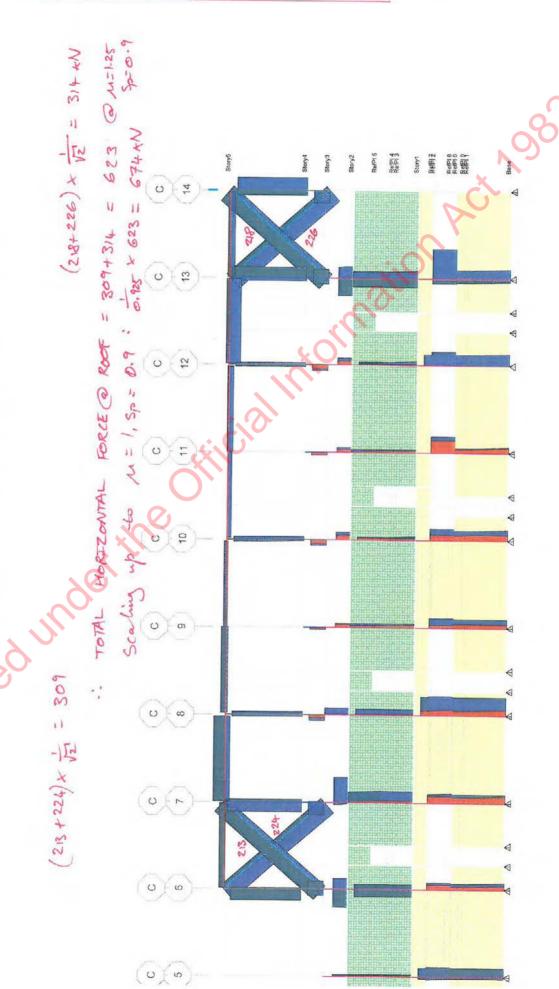
ect/Task/File	No: WEGC EAST BLOCK	Sheet No	of
ect Descripti		Office:	
		Computed: An	40 114/09
		Check:	1
	DATE OF THE CONTRACTOR		
	NORTH ELEVATION CONCRETE	FRAME	
	SUMMARY		
The	colores and likely to be	11 1 1 1 20	00
botton	columns are likely to be a me without couring theat fail	to to mage	top and
4,		And the second	Dr. Carre
Mosc	imm allowable ductility = 1	n=2 due to	limited
Sinc	ce building displacements wir	ill bo low	1
are	able to accommodate ex	pechod duck like	u dem
	L- M 131 F1 - 1511		/
	Lo Mare 1st Floor displace ment	Imm -	V. Smel
	2. O.K.		
	i ci Ci		
	XO'		
	8		
O.	?		
0			

OPUS

Project Description:	Sheet No of Office:
	Computed: PMO 108/C
	Check: /
RB 25 CROSS-BRACING CAPACI	72
-Used to brace south elevation at 2" Floor,	in longitudinal di
Min yield strength = 245.5 KN	No
	X
Including angle factor:	200
4038	
Angle -	2 45° ONE
	20
Lateral force required to reach ?	45.KN = 12 × 245.5
	74 KN
	7 7 87
2 Eraces effective on onling 1	ine
1. 2 × 17 4 = 848 ×N	

aching in tention of compression.

matified to 0.5x Actual


X-Sectional area to account for

RB 25

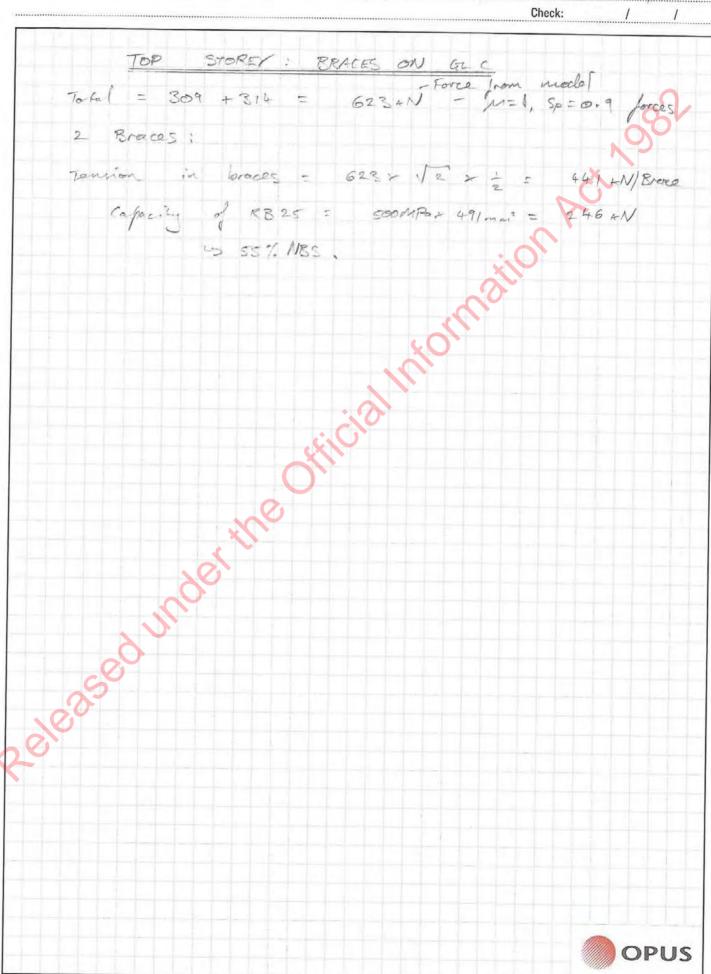
5/82

## MODEL 12.2 - CBF DISCONNECTED

## GLC - BRACES AT TOP STOREY



Elawation Viant C Avial Earn Diagram


מחם כ פני לבחם זבה

JENERAL PIPALI

## CALCULATION SHEET

5/23

P. C. Per Charles Co. St. Land			
Project/Task/File No: WEGC EAST BLOCK	Sheet No	of	
Project Description:	Office:		
	Computed Of	40121/09/2015	
	Check:	1 1	



01-

Task/File No: WEGC EAST BLOCK	Sheet No	of
Description:	Office:	***************************************
	Computed: PMO 122/0912	
	Check:	1 1
BRACING CHECKS AT TOP STORES	<b>&gt;</b>	
LONGINDINAL DIRECTION		
Storey shear force from ETABS mock	1 = 911 KI	00
Ster Jane France El 133 Million	( - 111 K1	10
- Bured on T=0.43.	×	
2 8 1 1 911		
3 Braced bays = 911 = 304 = N	each bru	and be
Scaling up for N=1, Sp: 0.9:		
304 × 1 = 329 KN		
	1.1-1-1/	10.
Force in Brace = 329x V2	465 KN	Brace.
. Similar to results directly	taken 1	rom moo
braces.	/	
TREATING TOP STOREY AS A PAR	т	
Weight = (201+(376) = 289 ->	290 AN	
4n = 13 m		
$h_n = 13 \text{ m}$ $h_i = 8.4 \text{ m}$		
C(0) = 0(52 - Ru = 1.3		
Force = 724 KN @ ULS - M=1		
(0)		
Allow Sp: 0.9 -> 724x0.9:		

TREATING AS PART JUSTZ FICATION FOR structure below. Its structural form

size frames / steel Lines of OPU The top
to the storey is relatively concrete concrete **OPUS** 

0.8

217 * 52

245.5 KN

= 307 AN

80%

Brace

307

. Force in Brace = RB25

Capacity

## **CALCULATION SHEET**

3/846

Project/Task/File No: WEGC EAST BLOCK Project Description:	Sheet No Office:	of
Tigos Book pila	Computed: PMO	10/11/12/201
	Check:	1 1
PARTS FORCE FROM ROOF = 652 XN	- 115/00 00	7 - 45 . 4
111112 10111 1180F 2 652 X19	Jan 1, -p- 01	16-017
T likely to be lower if rear braces	not presens	4
9		
6 Model 12.76 no 1 braces GLC - T	for top stores	= 0445
		1
Alburino 11: 1.25 - some due to la	the in the	
4; = 8. fm		
hn = 13 m		
Lo Horizontal force = 615 +1.		
model 1272 for lord care	lat force in	The
model 12.12 for load care	DOC 14 CON	0.3505- 1
c.C.		
01		
20,		
01		
		OPUS



Job Title: WEGC East Block DSA

Job Number: Member Reference:

Calcs By: PMO Date: 22/09/2015 12:11:42 p.m.

Report created using Seismic Shear forces to NZS1170.5 Design Tool Version 1.1

## HORIZONTAL SEISMIC SHEAR (V) TO NZS 1170.5 - Section 8

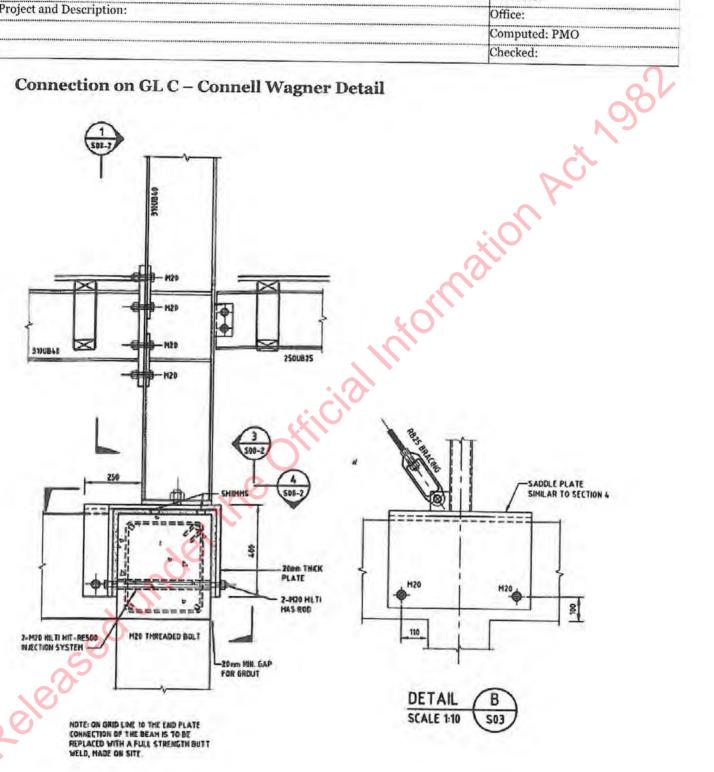
### Input Data

Site Hazard Coefficient for T = 0 is 0.52
Period of the part = 0.4 Sec
Height of the attachment of the part = 8.4 m
Height from the base of the structure to the uppermost seismic weight or mass = 13 m
The part risk factor from table 8.1 = 1
Weight of the part = 290 kN
Ductility of the part = 1.0

## Design Response Coefficient for parts CI 8.2

Floor height coefficient CI 8.3 = 2.400
Part spectral shape coefficient CI 8.4 = 2.000
Design Response Coefficient for parts Cp(Tp) = 2.496

### Horizontal design action CI 8.5.1


The part horizontal response factor CI 8.6 = 1.00
The part risk factor from table 8.1 = 1.0
Horizontal design action = **724** kN

Released under the



Calculation Sheet	
Project/Reference No: WEGC East Block DSA	Sheet No:
Project and Description:	Office:
	Computed: PMO
	Checked:

## Connection on GL C - Connell Wagner Detail



# CONNECTION DETAIL -

Cornection different to Connel Wagner detailor drawings - indicative of no per beam keing present. - Still assume 2 - M20 Hill HAS Rool





Released under the Offi

Project/Task/File No: WEGC EAST BLOCK DSA  Project Description:	Sheet No of
T 10/304 Bookinghion.	Office: Computed: PMO 16 / 10 1 201
	Check: / /
CONNECTION OF BRACE TO CONC	RETE COLUMNS
2 - M20 Hilfi Anchors (HAS Rod) - (	Good quality archors
Assuming Grade 5.8: Vpd, 5 = 44.8 +	
2 × 44.8 = 89.6 kN	
Bolts in double-shear -> 2×89.6  E = 1, 5=0.9  Demand = n 210 x √2 = 397 ->	= 199 KN
Demand = ~ 210 x V2 = 397 ->	300 LN
179 = 60 % NBS	
300	
M20 HAS ROOM	
Taking safety factor off:	
Assuming 9=0.8 -> 179 =	224×N
224 = 75% NBS	c
$\frac{224}{300} = 75\% NBS$	
CONNECTION ~ 75% NBS	
	OPUS

# **CALCULATION SHEET** WELL EAST BLOCK Project/Task/File No: Sheet No **Project Description:** Office: Computed: PMd 28/09/2015 Check: CANTILEVERING COLUMNS ON GLE -OUT-OF-PLANE Columns at C:6 - C:14 support the new top storey. From model, Load (Lakeral) = ( N Total - M: 1.25, Sp = 0.9 ~ 3 total force on this line (the) COLUMNIS F4-1"\$ Cover to man bors = Ties: 3/8"@ 8" de Concervatively assuming no axial load: Mn = 60 H/m Force F to yield in flexure = 60 -55 = 55 KN WALL 3 WALL SHEAR CAPACITY Basing only on stimps DVs: 02×3" (08": 0.75×2×245×71×254 = 33×N V. : 075×0.2 × J30 × 406×254 = 85 KN TOTAL = 118 KN

Fleximal faither more likely first. But then Ve will diminish towards of 0.1 APR: -NZSEE 2006

EVC: 0-75 + 0.1 × 130 × 305×254 = 32 xN

i. Q(Vs+Vc) = 65 xN - Still higher than itself demand. But with overlike right possibly thear governed.

OPUS

Project/Task/File No:	WEGC	EAST	BLOCK	OSA	Sheet No		of
Project Description:	***************************************				Office:		***************************************
		***************************************			Computed: /	MOI	1
		******			Check:	1	1

X-BRACES ARE EXFECTIVE & SUPPORTING FLOOR V2.7 model: Shear in model = 188+165+4+52+66+52+64+162+162 I a Ge beam is present -> equal demands: 55 211 each -> x 8 = 440 N Wirtant sie . yield ynite quickly and demands **OPUS** 



OPUS

WEGE EAST Project/Task/File No: PLOCE Sheet No **Project Description:** Office: Computed: PMO 130/11 12015 Check: RELYTAGE ON CANTELLERING COLUMNIS TYPE 1 columns: Mn = 112 x /Vm 5/55 : M = 129 +Nm Loope are of bottom of 1st floor, however: Lap = 40 + Diameter: ~ 1000 mm But, bors are hooked into the beam at top. is I comment cantilever from top Number of Columns 6x 7 pe 1 = 6x 112 : 672 xllm 6x Type 2 = 6x 129 = 774 xllm 1446 - 3494N 4.147 TO FFL 12.7e total demand on front elevation = - 14+26 + 14+26+15+28+16+29+16+29+17+28=25241) Model Lo Doesn'+ course you of. Lo > 100%

#### **Singly Reinforced Beams**

	Ch	aracteris	tic Material Value	es	
1st Y	ield (MPa)	Young's	Modulus (MPa)	Strains at 1 st yield	
$f_y$	245	Es	200000	$\varepsilon_{s}$	0.00123
f'c	30			ες	0.003

	Breadth b _w (mm)	(mm)	Tension Reinforcemen t Diameter	of Bars	Effective depth d (mm)	Maximum aggregate size (mm)
305	406	38	25.4	2	254.3	 20

#### Flexure

7.4.2.7 Equivalent concrete rectangular stress distribution

 $\begin{array}{ccc} \alpha & 0.85 \\ \beta 1 & 0.85 \end{array}$ 

7.4.2.8 Theoretical Balanced Condition

 $a=\beta_1c$ 

 $c_{balanced}$  180.568 mm a 153.483 mm Lever arm=d-(a/2) = 177.559 mm Concrete Force Fc 1589.01 kN  $M_{balanced}$  282.142 kNm

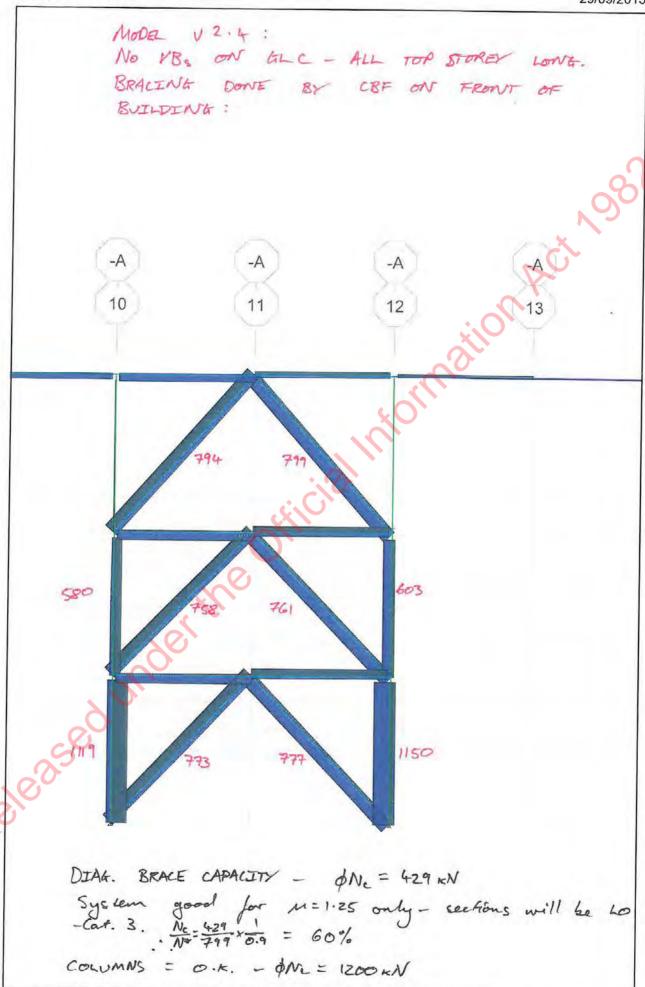
9.3.8.1 Maximum reinforcement so that c<0.75c_{balanced}.

 $c_{max}$  = 135.426 mm  $a=\beta_1c$  = 115.112 mm Lever arm=d-(a/2) = 196.744 mm Concrete Force F_c = 1191.76 kN  $As_{max}$  = 4864.31 mm²

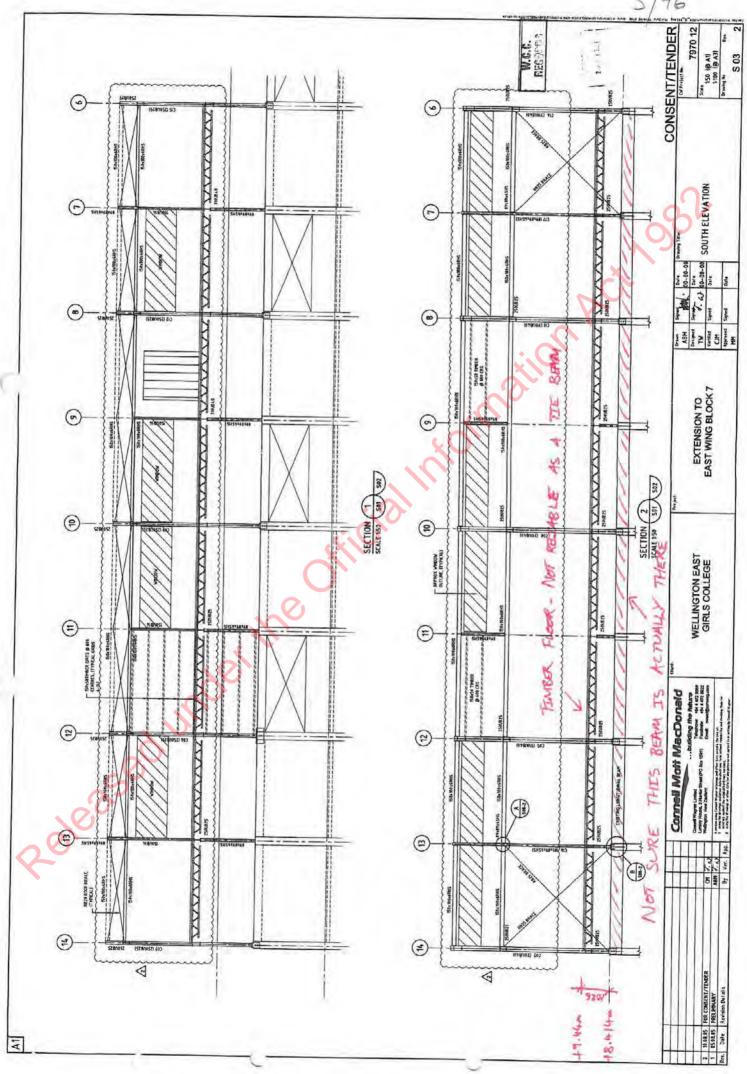
9.3.8.2.1 Min As =  $589.976 \text{ mm}^2$ 

Actual As = 1013 mm²
Steel Force = 248 kN
c 28 mm
Lever arm=d-(a/2) = 240 mm
60 kNm

2.3.2.2 (c) **b** 


7.4.1  $M^* = \phi M_0 = 60 \text{ kNm}$ 

Project/Task/File No: WEGC MAIN BLOCK Project Description:	Sheet No	of
r roject description.	Office:	MO 122/09120
	Check:	1 1
	Oncor,	
Since no tile bound shown drawings between the tops of from above will go to fur Force =		Construction
Columne capable of Authain	ing a region dem	nand
		ODII

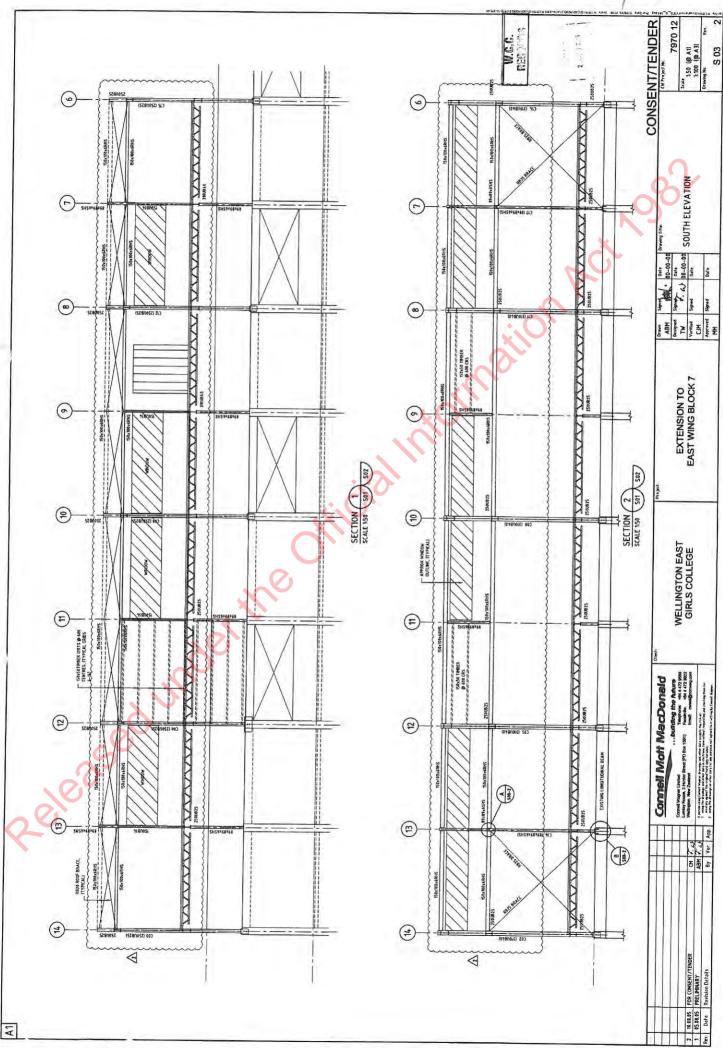

Project Description:	Office:
	Computed: PMO 128/0912015
	Check: / /
	TEXTENDED
Il Overthength factor = 1.35;	1.25× 35 = 69+N
:. Shear probably O.t.	
1 100 - 000	
spacing of hes	
Spacing of fies: 2" = 209	d Z al -> Mr 2 conserva
I Per column, force required	to yield columns = 55KN
Number of columns = 9	
-: 7 x 55 = 495 xN	
-: 1x 58 - 495 xN	
O ₁	
	OPUS

act/Took/File No. 18 15 15 15 15 15 15 15 15 15 15 15 15 15	10.000	-/ 12
ect/Task/File No: WEGC EAST BLOCK ect Description:	Sheet No	of
	Office:	MO128/09/2015
	Check:	1 1
TOP STOREY BRACTNG - LONGTIND	ZNIAI	
32.304		91
to x		100
<u> </u>		
1 0 1 − 78 − − 78 −	- LC	
₩ 1±		
0 4		
T ⁺	×O'	
460 4	<i>%</i>	
TOTAL DEMAND = 652 KN -1	= 1, Sp = 0.9	
on GLC:		
Londed area = 2.51 x 32.304 + 2 x 7	.747 + 32 - 304	= 206 m²
206		
(10.257× 82.302) - 62 %		
Lord = 6206 x 652 = 405	4N	
If M= 2150 = 0.7:		
1.57 Sp. 0.7		
M=2 3 SP = 0.44		
1, Sp = 0.9:		
Ku=1, Sp:019 -> 3P =	0.9	
Ratio = 2		
: I M = 2 -> Factor = 50%	-> 40s	x = = 2024/
Capacity ~ 110 KN > 54 %		
But, capacity of big CBF on the torsion takes out by transver	B probably	fine if
torsion takes out by transver	re framas	V - Check
		OPUS

CALCULATION SHEET	_	2/14	
roject/Task/File No: WEGC EAST BLOCK	Sheet No	of	
oject Description:	Office:		*************
	Computed: P	40 129/0	9 1 201
	Check:	J	1
RELYING ONLY ON FRONT CRF			
11 0-1		0	V
- Model re-run without vertical braces	on GLC	. 0	)
- Loads in braces go up a 500 AN.	This is a	1.67 >	+ Cap
			/
L> 60% NBS - LOWER	BOUND		
columns gield! This will have the	ce of t	antilo.	000
columns yield! This will have the	affect of	Courerin	0 0
demand.	6	-	
· Countile we mine	.50.5	n . n	.5.1
· Contilercoing cohemns will still pro	rices non	is re	Si Seu
- Overall ~ 70% seems fair.			
In FIARC IN 1 OF SEC. IN SEC. IN SEC. IN	- ,		
15 ETABS mode indicates periods without x	braces -	0.4	2.2
Cd(T) = 0.9 vs 0.98			
	•/		
- 0.92 factor -> 60 = 65	10		
+ some Contribution from + braces	at other	side	-
to le neems fair.			
	And the second		
		OP	US



5/96 CONSENT/TENDER 7970 12



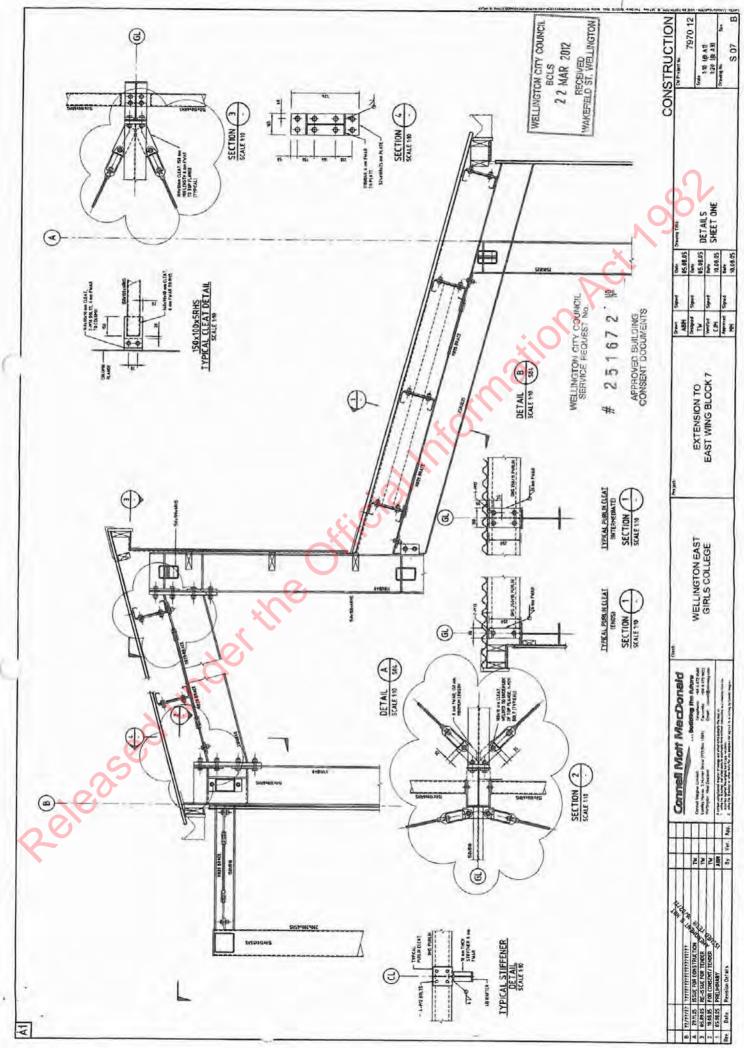

JOHNSON TIMBER FLOOR AS THE REAM:    UTILISANG TIMBER FLOOR AS THE REAM:    Those signal = 400 / 200 Series footenet - Timber truss - joints.   - Connection to the columns not likely to be that reliable to Discount.    SUMMERY OF ASSESMENT OF REALES	roject/Task/File No:	WEGC	EAST	BLOCK	***************************************	Sheet No	of
Check: 1 1  UTILISING TIMBER FLOOR AS THE BEAM:  Floor signer = 400 / 800 series for struit - Timber trusk - joints.  - Connection to the columns not likely to be that reliable to Discount.  SUMMARY OF ASSESSMENT OF BRACES  Rely on the beam being present at Lotton of brokers.  Profined constructions drawings inclinate that the tied beam assumed in the Vaolations is not actually there.  Cannot configure (early) whether his beam is there or not:	roject Description:			******		Office:	
Check: 1 1  UTILISING TIMBER FLOOR AS THE BEAM:  Floor signer = 400 / 800 series for struit - Timber trusk - joints.  - Connection to the columns not likely to be that reliable to Discount.  SUMMARY OF ASSESSMENT OF BRACES  Rely on the beam being present at Lotton of brokers.  Profined constructions drawings inclinate that the tied beam assumed in the Vaolations is not actually there.  Cannot configure (early) whether his beam is there or not:		***************************************				Computed: A	10 129/09/20
Floor auction = 400 / 300 series foristrut - Timber truss - joints.  - Connection to the columns not likely to back that reliable to Discount.  SUMMARY OF ASSESSMENT OF RRACES  Reidbraces themselves - 20% NBS  Connections (Anchors)  Rely on the boam being present at bottom of broces.  Original constructions drawings inclinate that the tiel beam assumed in the additions is not actually there.  Cannot confine (early) whether he beam is there or not:							1 1
Floor auction = 400 / 300 series foristrut - Timber truss - joints.  - Connection to the columns not likely to back that reliable to Discount.  SUMMARY OF ASSESSMENT OF RRACES  Reidbraces themselves - 20% NBS  Connections (Anchors)  Rely on the boam being present at bottom of broces.  Original constructions drawings inclinate that the tiel beam assumed in the additions is not actually there.  Cannot confine (early) whether he beam is there or not:							**************************************
Floor auction = 400 / 300 series foristrut - Timber truss - joints.  - Connection to the columns not likely to back that reliable to Discount.  SUMMARY OF ASSESSMENT OF RRACES  Reidbraces themselves - 20% NBS  Connections (Anchors)  Rely on the boam being present at bottom of broces.  Original constructions drawings inclinate that the tiel beam assumed in the additions is not actually there.  Cannot confine (early) whether he beam is there or not:		1 100 100 100			4-	- 2	
- Connection to the columns not libely to be that reliable to Discount.  SUMMARY OF ASSESSMENT OF BRACES  Reidbraces thomas lives - 50% NBS  Connections (Archors)  Rely on the beam being present at bottom of broces.  Orginal constructions drawings inclicate that the tied beam assembled in the Valditions is not actually there.  Cannot confirm (early) whether he beam is there or not:  (BI can take alot of load if & braces.		OITHSING	17.1486	K FLOOR	45 /10	BEAM:	
- Connection to the columns not libely to be that reliable to Discount.  SUMMARY OF ASSESSMENT OF BRACES  Reidbraces thomas lives - 50% NBS  Connections (Archors)  Rely on the beam being present at bottom of broces.  Orginal constructions drawings inclicate that the tied beam assembled in the Valditions is not actually there.  Cannot confirm (early) whether he beam is there or not:  (BI can take alot of load if & braces.							10.
- Connection to the columns not libely to be that reliable to Discount.  SUMMARY OF ASSESSMENT OF BRACES  Reidbraces thomas lives - 50% NBS  Connections (Archors)  Rely on the beam being present at bottom of broces.  Orginal constructions drawings inclicate that the tied beam assembled in the Valditions is not actually there.  Cannot confirm (early) whether he beam is there or not:  (BI can take alot of load if & braces.	Floor	Aug Rem	= 40	0 /300 5	enter	Posit rout -	Timber
- Connection to the columns not likely to be that reliable to Discount.  SUMMARY OF ASSESSMENT OF BRACES.  Reliables of Manualines a too NBS. Connections (Anchors) a 45% NBS. Rely on the beam beam present at bottom of braces.  Original constructions drawings inclinate that the tied beam assumed in the additions is not actually there.  Cannot continue (early) whether he beam is there or not.  CBF can take alot of load if & braces.		0	tro	use - jois As.	-		
SUMMARY OF ASSESSMENT OF BRACES  Reidbraces Mannalves in 20% NBS Corner froms (Anchors) in 75% NBS Rely on the beam beams present at bottom of braces.  Original constructions drawings inclinate that the tied beam assumed in the additions is not actually there.  Cannot configure (easily) whether he beam is there or not.  CBT can Take Alot of load if & braces.				_			
SUMMARY OF ASSESSMENT OF BRACES  Reidbraces themselves in 20% NBS Connections (Anchors) in 75% NBS Rely on the beam being present at bottom of braces.  Original constructions drawings inclinate that the tied beam assumed in the additions is not actually there.  Cannot configure (early) whether he beam is there or not.  CBT can take Not of load if & braces.	- C	onnection.	to the	column	s not b	ikely to bor	that reliab
SUMMARY OF ASSESSMENT OF BRACES  By Reidbraces Mounaires a 30% NBS Connections (Auchors) at 75% NBS Rely on the beam beauting present at bottom of braces.  Original constructions drawings inclinate that the tied beam assumed in the additions is not actually there.  Cannot configure (early) whether he beam is there or not:  (BF can take Not of load if & braces.						0	
SUMMARY OF ASSESSMENT OF BRACES  By Reidbraces Mounaires a 30% NBS Connections (Auchors) at 75% NBS Rely on the beam beauting present at bottom of braces.  Original constructions drawings inclinate that the tied beam assumed in the additions is not actually there.  Cannot configure (early) whether he beam is there or not:  (BF can take Not of load if & braces.	45	Discouns	t.			X Y	
Reidbraces Manualves ~ 20% NBS  Connections (Archors) ~ 25% NBS  Rely on the beam beam present at bottom of braces.  Original constructions drawings inclinate that the tied beam assumed in the additions is not actually there.  Cannot confirm (easily) whether he beam is there or not:  (BI can take what of load if & braces.							
Rely on hie beam beams inclined that the tied beam assumed in the additions is not actually whether hie beam is there or not:  CBI can take what of load if & braces.						X/O	
Rely on the beam beaming inclinate that the tied beam assumed in the additions is not actually whether he beam is there or not:  CBI can fake what of load if & braces.		S. MAN	MARY	OT- NO	SESSMEN	A ME PRO	MEC
· Original constructions drawings inclinate that the tied beam assumed in the additions is not actually there.  · Cannot confirm (easily) whether he beam is there or not:  · CBI can take alot of load if & braces.							
· Original concernetion drawings inclinate that the tied beam assumed in the additions is not actually there.  · Cannot confirm (easily) whether he beam is there or not:  · CBI can take alot of load if & braces.	· 889	Reid brace c	Man	10 lnes	~ 80%	NBS	
· CBI can take alot of load if & braces.		Conner Fions	(Avchers	)	n 75%	NBS	
· Original constructions drawings inclinate that the tied beam assumed in the additions is not actually there.  · Cannot confirm (easily) whether he beam is there or not:  · CBI can take alot of load if & braces.		Rely on	tie - bo	am le	ma pres	ent at be	oftom of
· Cannot confirm (easily) whether he beam is there or not:  (B) can take alot of load if & braces.		braces.			0 /		0
· Cannot confirm (easily) whether he beam is there or not:  CBI can take alot of load if & braces.		05.					
· Cannot confirm (easily) whether he beam is there or not:  · CBI can take alot of load if & braces.		ong nat c	one frue	from dr	eurings !	reliende The	it the
· Cannot confirm (easily) whether he beam is there or not:  (B) can take alot of load if & braces.		ne beam	aster	red in	the Caple	ditions is a	of actually
· CBI can take alot of load if & braces.		ner.					
· CBI can take alot of load if & braces.		Cannot co	and Error	(on: 14)	whother	- he home	is those
CBT care to be alot of load if & braces.  Light Prob. good for 70% NBS a reasonably conserved.	(	ar not:		( Can )			13 04-0
CBT can take alot of load if & braces.  Light Prob. good for 70% NBS ~ reasonably conserved.				, ,	7 1 3		
13 Prob. good for 70% NBS a reasonably conserved	. (	BI can	fa he	alot of	load i)	& braces.	
200 for 70% NBS ~ reasonably conserved				1 0	-0710		12
		T) Brog	. good	for te	1º 1082	~ reasona	bly conserv
							0
		0					
	05						
	0.0						

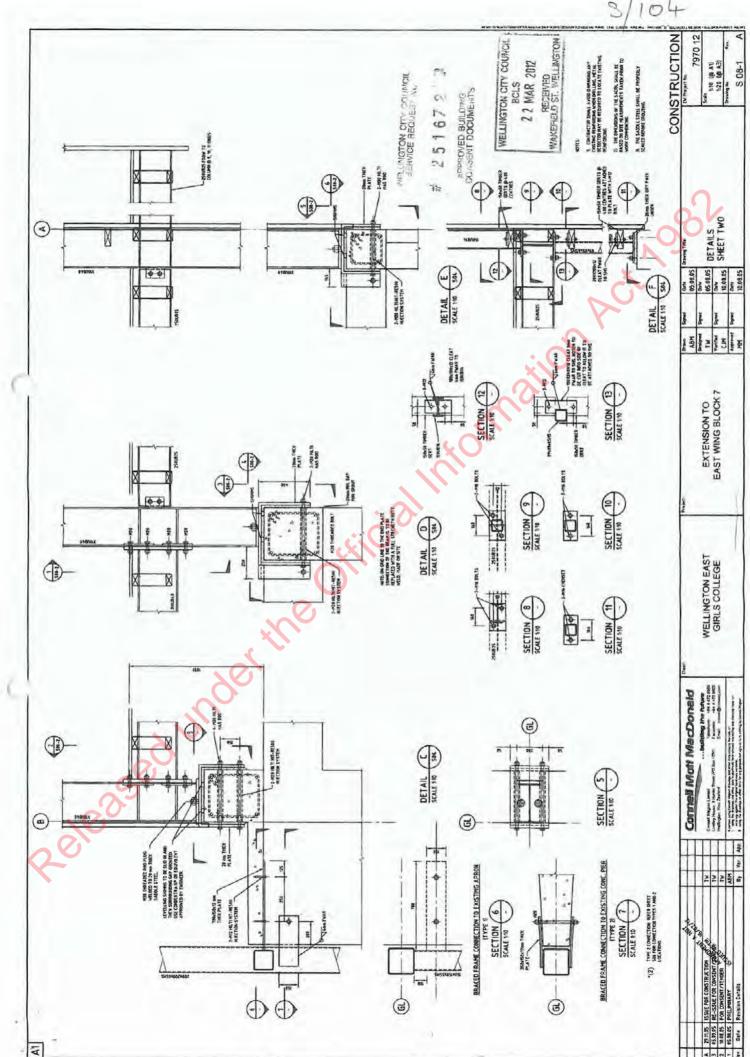
5/98

ect/Task/File No: WEGC EAST 81005 ect Description:	Office:	of
	//4: :	
	Computed: PMO122	10912
	Check: /	
FORCES FROM ETABS		
RB20		9
		3º
	136 KN	
Capacity = 500 x 314 = 157+N		
O.k.		
	;(O)	
<u>RB12</u>		
Works -case = 45 KN + 1/6,925	1.9 +N	
	4/4/	
Capacity = 500 x 113 =	56.5KN - O.K.	
. ALL ROOT BRACING O.A.		
CO		

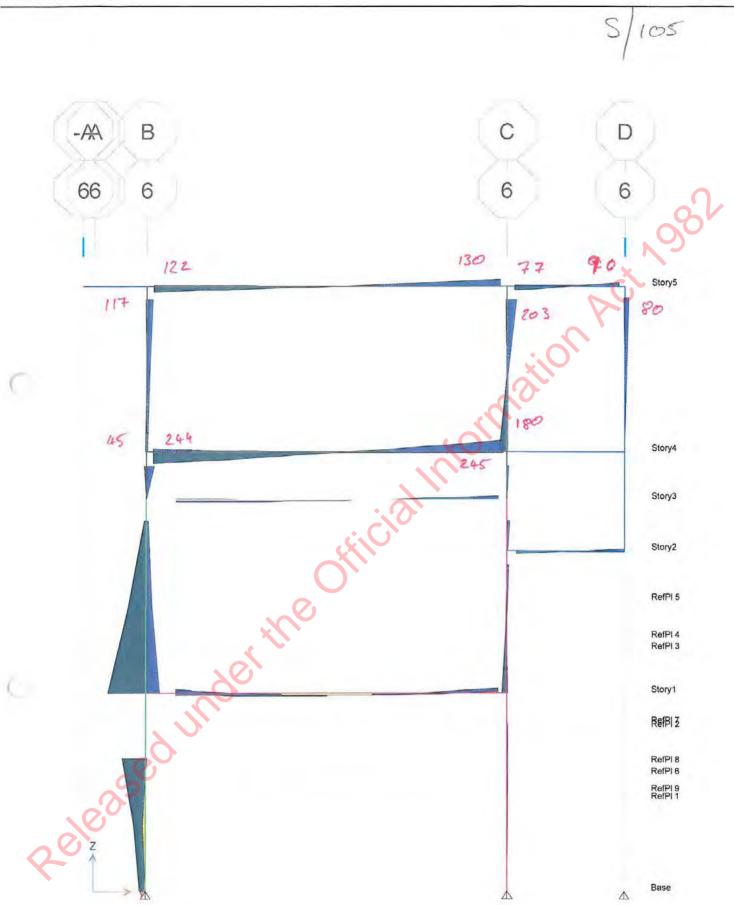
OPUS



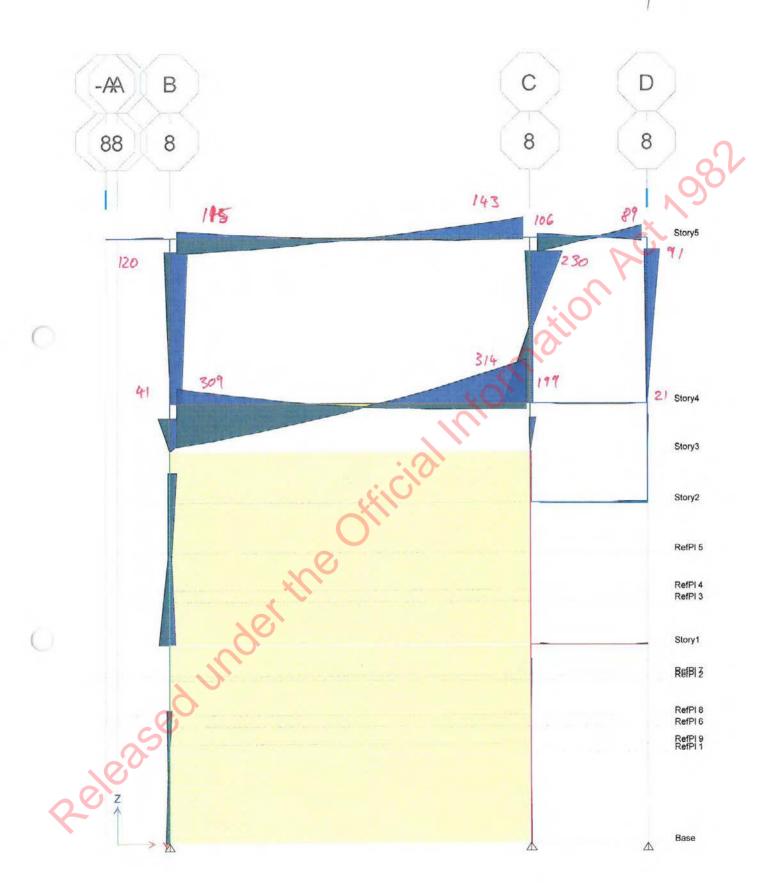

# 5/101 **CALCULATION SHEET** Project/Task/File No: WEGC EAST RIDGE Sheet No **Project Description:** Office: Computed: PMO1 0912015 Check: PORTAL FRAMES 310 UB 40 beams 6Msz - 182 KMm My = 203 +Nm Demand - Generally ~ 250-300 +Non demand in floor beam Duckelly demand ~ 1.5 - 2 - Also, conservative period assumed - actually likely longer than Drawings show stiffeners opporte flanges. Looks quite a good detail - may cause some yielding in show of the web but should be fine for M=2. LATERAL - TORSLOWED BUCKLING The brane of corners. That in=2 cap. Vis shill likely for excessment > 100 %

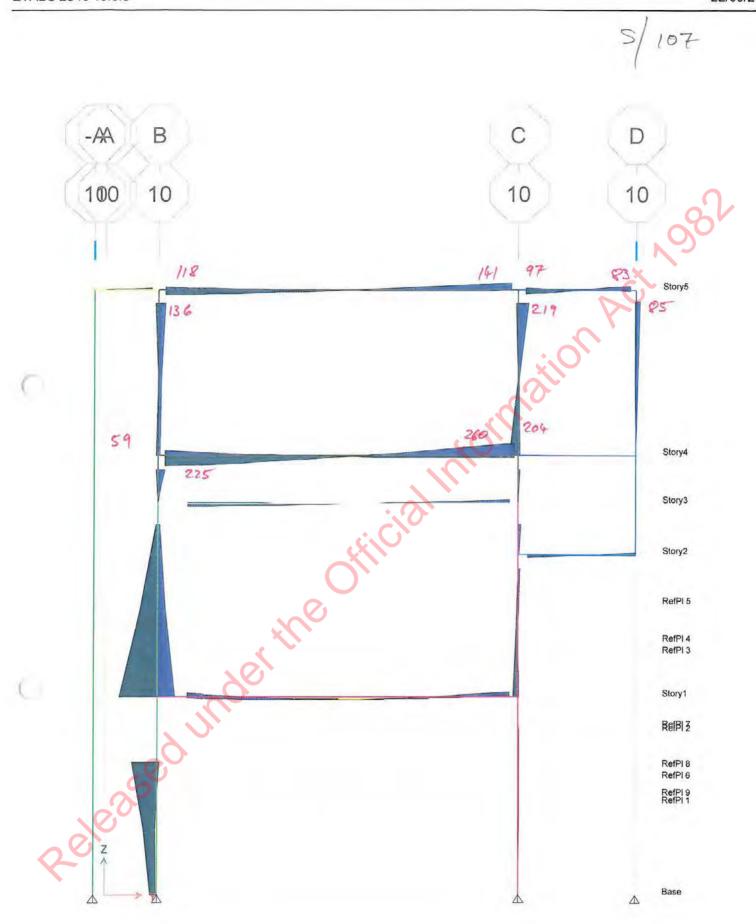

Beam

Section type UB

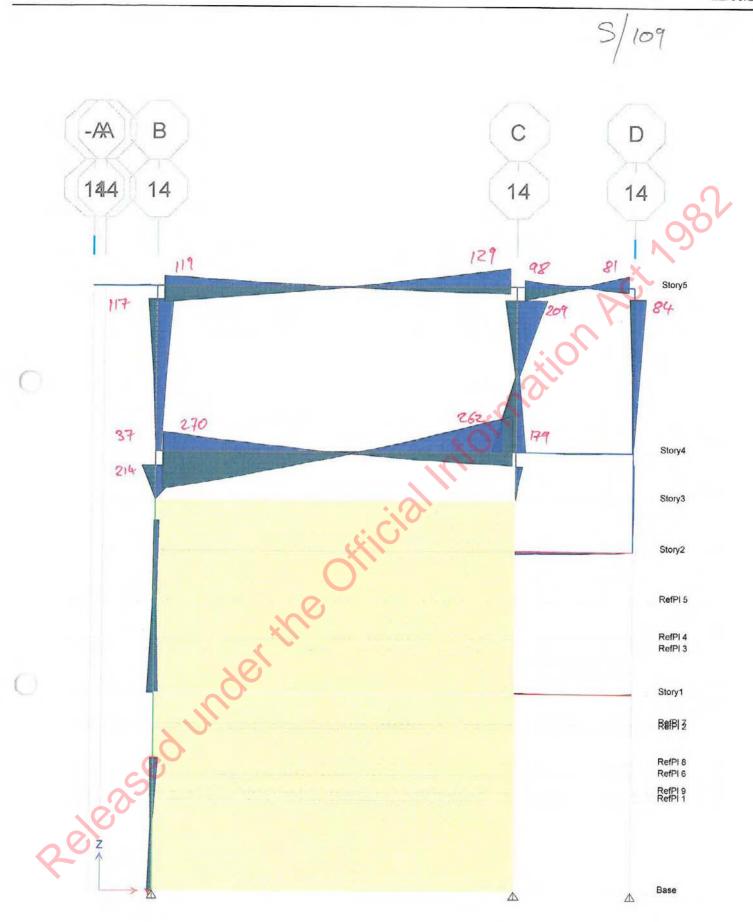

Section 310 UB 40.4

Released under the Official Information Act, 1982 fy 320 MPa Zx 633000 mm3




ETAB5 2010 10.0.0 ZZIU9IZUTS




S/106









Project/Task/File No: WEGC FAST BLOCK DSA. Sheet No of
Project Description:

Computed: PMO 16/10 12015

Check: 1 1

ORIGINAL ROOF BEAMS - OUT- OF-	PLANE
Typical boom: 10"  4- 7/8" Burs  10"  2/6" @ 9" c/c Ties	
d = 254- 38-9.5-22 - 195	
Mn = 35 Alm	
DEMAND DEAD LOAD - UOL	
	= 2.22 xN/m
	2.9 AN/m
Treating as a part with 11=2  h; = 8.4 m  hn = 14.5 m	5-12 +N/m
For miss -> Force Fn = 56 AN	
50 M* = 56x 8 = 56 K/m	
Capacity = 35 ANM	
35 = 63%	
If n= 3 -> Fh = 46 N	
M* = 46 K/m  35 = 76%	
	11: 229 mm = n# depth.

#### Singly Reinforced Beams

	Cł	aracterist	ic Material Value	es	
1st Y	ield (MPa)	Young's I	Modulus (MPa)	Strain	s at 1 st yield
fy	245	Es	200000	ες	0.00123
f'c	30			ες	0.003

	b _w (mm)	(mm)	Tension Reinforcemen t Diameter	Number of Bars	Effective depth d (mm)	110000	Maximum aggregate size (mm)
254	457	48	22.225	2	194.888	7715	20

7.4.2.7 Equivalent concrete rectangular stress distribution

α 0.85 **B1** 0.85

7.4.2.8 Theoretical Balanced Condition

 $a=\beta_1c$ 

Chalanced 138.382 mm 117.624 mm Lever arm=d-(a/2) =136.075 mm Concrete Force Fc 1370.74 kN Mbalanced 186.523 kNm

9.3.8.1 Maximum reinforcement so that c<0.75cbalanced

> C_{max}= 103.786 mm  $a=\beta_1c$ 88.2183 mm Lever arm=d-(a/2) =150.778 mm Concrete Force F. 1028.05 kN Asmax 4196.13 mm²

9.3.8.2.1 Min As 508.935 mm²

> Actual As = 776 mm² Steel Force = 190 kN C 19 mm Lever arm=d-(a/2) 185 mm Mn 35 kNm

2.3.2.2 (c)

1  $M^* = \phi M_n$ 7.4.1 35 kNm

Project/Task/File No: WEGC EMST BLOCE DSA Sheet No of
Project Description: Office:

Computed: PMO 16/10 12075

Check: ficity at connections: 56×8 - 37 KMm 95% O.K. **OPUS** 

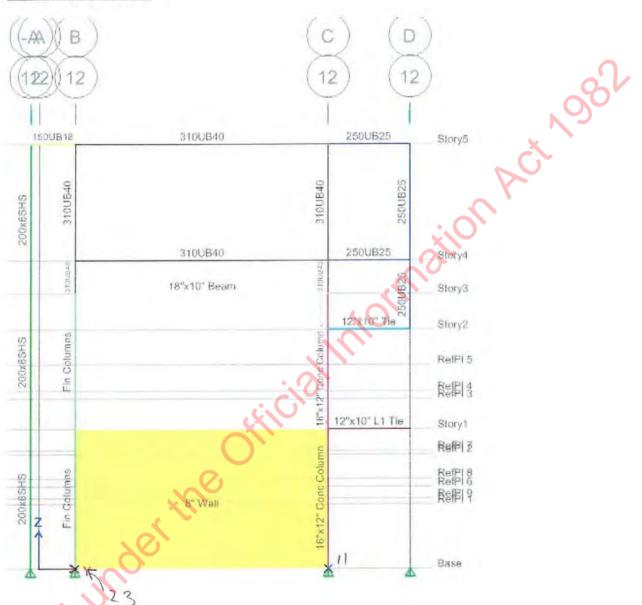
GOLATION SHEET	_	1112
t/Task/File No: WEGC EAST BLOCK	Sheet No	of
t Description:	Office:	
	Computed:	PMO16/10 1201
	Check:	1 1
2nd FLOOR DIAPHRAGM		
- Timber diaphrague - Doristat.		OV
	0-10 -1-1 /-	
- Lateral forces transferred to transv	1001 60	ams an
Connection of Heat beam = 8-M	20 in shear	
Connection of seal beam = 8-M Assuming Grade 4.6/5 both:	PVer= 4.6,	N /Bolt
257 00		
8 × 44.6 = 357 *N		
Number of connections along & B	7	
- 9 x 357 = 3211 xM		
3211		
O.K.		
By inspection, timber floor will !	e adequate	and on
diaphragn.	/	
.`. > 100 %		
0		
CO		
		OPUS
		"

FOUNDATIONS	1
The Foundations for the building are shallow strip and pad footings, with a ground-bearing slab.	
The East Block is founded on rock. Its stability syst comprises relatively long, squal shear walls. The Lew CBF that was installed on the north elevation has pad foundations.	
CHECK ON CBF PAOS	
Load = 850 *N - Model V. 2.2 560 *N V.2. Size of pad: 1650 × 1650 × 600	
Weight: 25x volume = 41 xN	
.: Mass force = 850 4 41 = 890 KN	
Pressure = 1890 = 327 xPa	
Allowable bearing pressure likely to be in order of	
PAD FOUNDATIONS O.K.	
WALL STRIP FOOTINGS	
Wall strip footings = 14" or 18" wick, with widenings of en	ds.
TYPICAL WALL - ON GL 5: - 356mm wick	
P= 414 xN M= 2929 x Nin	
Length: 7.747m	
Eccontricity + 7:075m	
ground / footing, but building is robust, so a hould be able to tolerate some rocking without compressing its	2
Mability. OPUS	

Story	Joint Label	Unique Name	Load Case/Com	FX	FY	FZ	MX	MY	MZ	
Base	185	329	EQENV Max	-4	2	63	0	0	0	
Base	185	329	EQENV Min	-40	0	-558	0	0	0	
Base	186	368	EQENV Max	19	1	595	0	0	0	
Base	186	368	EQENV Min	-29	-2	-333	0	0	0	,

Released under the Official Information Act 198

CBF REACTIONS


	1	
0	INI	1
0/	11	6
1		

Story	Joint Label	Unique Name	Load Case/Com	FX	FY	FZ	MX	MY	MZ
Base	192	370	EQENV Max	93	1	279	0	0	0
Base	192	370	EQENV Min	-273	-3	-848	0	0	0
Base	193	371	EQENV Max	91	1	887	0	0	0
Base	193	371	EQENV Min	-275	-3	-300	0	0	08

Released under the Otticial Information net 1988

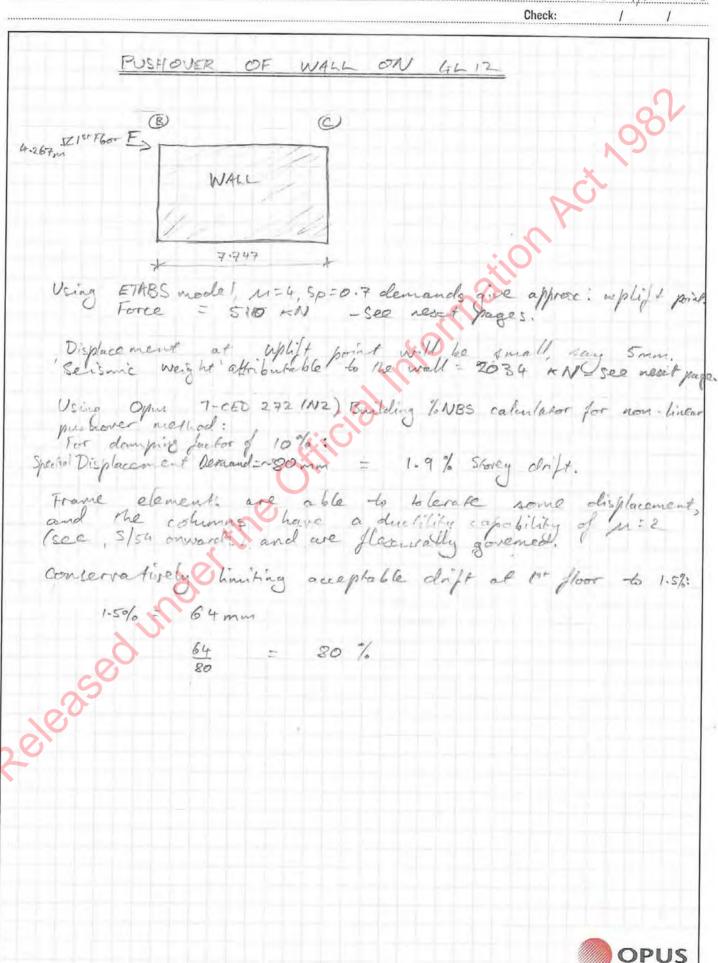
		5///
Project/Task/File No: WEGC EAST BLOCK DSA	Sheet No	of
Project Description:	Office:	
	Computed	PMO18/10/2019
	Check:	1 1
WALL ON GLIZ		
The time to the terms of the te		
FOUNDATION AT END OF WALL		$\Omega$ .
- Check bearing		90V
Area : 0.952 m2 +	2×0.4571	0.178 = 2.044
*1	0	O
	Y	
3		
* Wall will e	neuve T	of footing
is engaged assumed	2/1 m	either side
ass contra	effective	•
1000 457 356, 457 1000		
Cu=2,5p=0.7	no	
TI 1 1	500000000000000000000000000000000000000	
I) load in rocking care = PST 1:	280 = 1	131 KN
1 > 5 - 12 - 1		
Say Cicou EN		
Pressure = 1200 -	587 4	P
	2011	, 4
I allowable = SOOKFE ->	85%	
	52%	
80% looks reasonable.		
10 lo works masonable.		
20% looks reasonable.		
		OPUS
		OFUS

#### **GL12 Wall Reactions**



Story	Joint Label	Unique Load Name Case/C 21.DSL	om FX	FY	FZ	MX	MY	MZ
Base	11	101 QY+0.3 X-		-926	1192	0	0	0
Base	11	101 EQENV Max	-8	113	1192	0	0	0
Base	11	101 EQENV Min	-43	-926	166	0	0	00
Base	23	21.DSL- 59 QY+0.3 X-		-640	-781	0	0	130
Base	23	59 EQENV Max	0	97	605	0	6	0
Base	23	59 EQENV Min	0	-640	-781	0	0	0

Released under the Official Information


Story	Joint Label	Unique Name	Load Case/Com	FX	FY	FZ	MX	MY	MZ
Base	11	101	21.DSL+E QY+0.3EQ X-	-20	-540	851	0	0	0
Base	11	101	FOFNV	-13	48	851	0	0	0
Base	11	101	EQENV Min	-32	-540	270	0	0	0
Base	23	59	21.DSL+E QY+0.3EQ X-	0	-347	-280	0	0	180
Base	23	59	EQENV Max	0	70	503	0	0	0
Base	23	59	EQENV Min	0	-347	-280	0	0	0

m= 2 used for rocking cose.

As can be seen, some uplift even at this care = 200Al Simply adding to the 857 will conservatively give an upper bound water for downward force on the end in compression: 280 + 857 = 1131 + N

zeleased under the

Project/Task/File No: WEGC FAST BLOCK	Sheet No of
Project Description:	Office:
	Computed: PMO 1 9/10 12015
	Check: / /



_	PUSHOVER	POINT	OF	UPLIFT
---	----------	-------	----	--------

Story	Joint Label	Unique Name	Load Case/Com	FX	FY	FZ	MX	MY	MZ
Base	11	101	27.DSL+E QY++0.3E QX-	-20	-328	664	0	0	0
Base	11	101	FOENV	-16	12	664	0	0	0
Base	11	101	EQENV Min	-27	-328	328	0	0	00
Base	23	59	27.DSL+E QY++0.3E QX-	0	-187	-6	0	0	100
Base	23	59	EQENV Max	0	54	448	0	0	0
Base	23	59	EQENV Min	0	-187	-6	0	0	0

Uplift in model when F2 turns regative.

Running the model (V2.5) with M=4, Sp=0.9

Shows wall uplifting as end 23' goes into remain (-6KN \(\sigma\) O \(\pi\N)\)

Laker Force at this point Frain + Fr(23) = 328+187=515AN ... Wall starts to lift up at ~ 510-515 AN Ly Use 510 AN

". Shear force in wall at this point = 515 kN

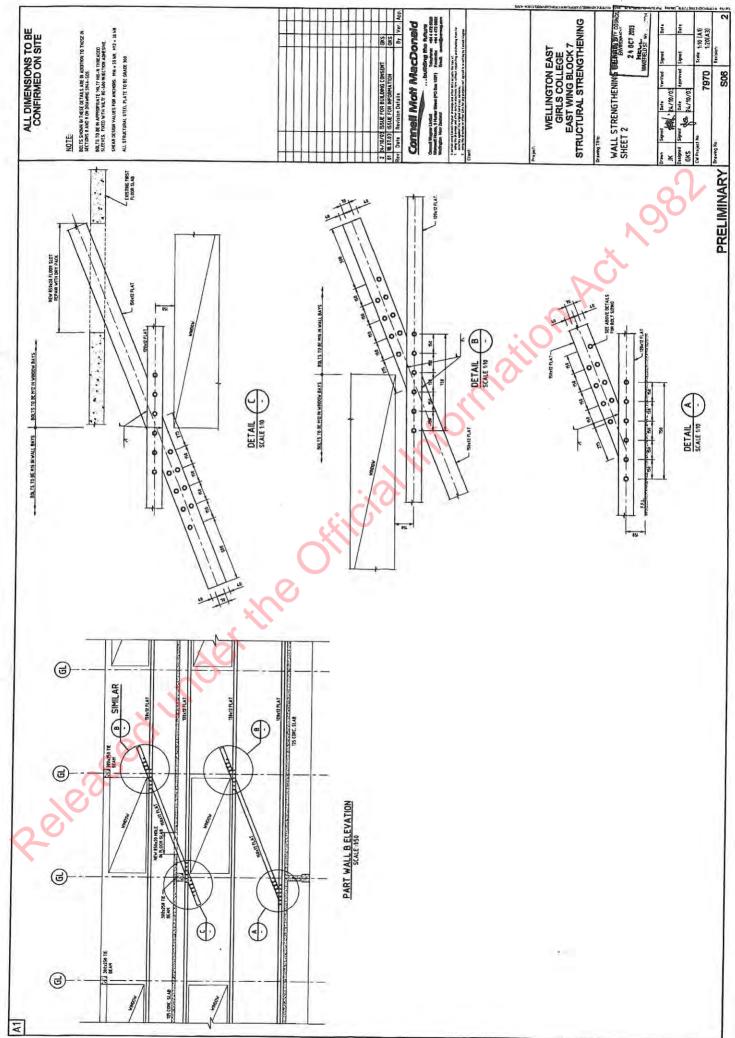
Total building thear force : Base thear = 2152kN (M=4, Sp=a;

Total building weight = 8500 kN

"Weight resisted by this wall = 8500 x 515.

Weight resisted by this wall = 8500 x 515 = 2034 KN

MODEL V2.6 M=4, 5p=0-7 STOREY SHEARS


			210	Ve.	-LIENKS				
0	Story	Load Case/Com	Location	P	VX	VY	T	MX	MY
==	Story5	EQENV Max	Bottom	257	61	90	3365	2481	-8526
	Story5	EQENV Min	Bottom	229	-19	-300	-11040	1032	-9348
	Story4	EQENV Max	Bottom	791	54	168	7880	4283	-23557
1	Story4	EQENV Min	Bottom	648	-180	-553	-20704	4011	-29322
	Story3	EQENV Max	Bottom	827	102	-84	349	6599	-12351
	Story3	EQENV Min	Bottom	592	-296	-233	-5761	4462	-21154
	Story2	EQENV Max	Bottom	2621	187	-29	4270	24581	-49317
6	Story2	EQENV Min	Bottom	2072	-599	-443	-10251	18310	-66324
	Story1	EQENV Max	Bottom	10111	646	646	32340	78153	-264275
	Story1	EQENV Min	Bottom	10111	-2152	-2152	-65005	58358	-284070
		x5001	Buse			2152	, tery		
	release								

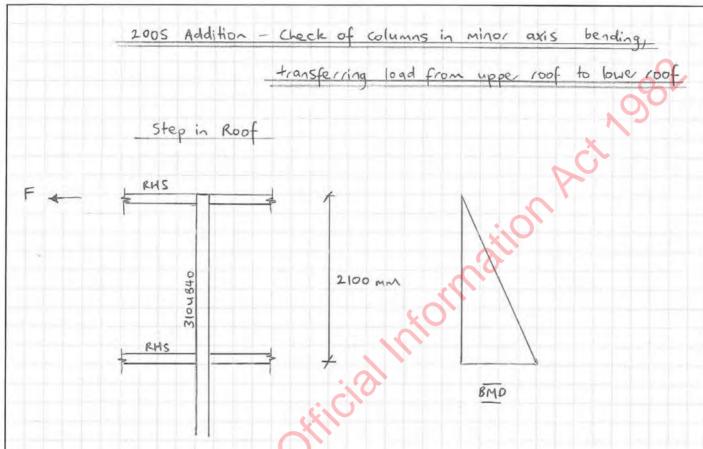
Calculation: Push-over curve, modified for mode shape, plotted on the NZS1170.5 Acceleration-Displacement demand spectra	ified for mode st	nape, plot	ted on the NZS1170.5 Acce	eleration-Displac	ement demand	dspectra			Date:	Date: 9/10/2015	
Design Spectrum	um					Pushover C	Curve				
Site Subsoll Class		8	Buildingweight		W (KN)	2035.0					
Zone Factor	5 2	0.4	Mode 1 mass participation factor	factor	PF,	1.00	1 7	carting	20 20	hingle	Leaner
Return Period Factor	R	1.3	Mode 1 mass coefficient		- 10	1.00	8	Ineedle	21 14	onelin	450
Distance to Major Fault	D (km)	5	Pushover Curve Point		-	1	2	3	4	5 (at Aus)	6 (at Acis)
Structural Performance Factor	Sp	2.0	Base shear		Vr (kN)	0.0	510.0	510.0	510.0	510.0	510.0
			Roof level displacement		A _{Lucot} (mm)	0	5.0	25.0	35.0	43.0	200.0
			Spectra acceleration		S ₂₁ (g)	000	0.251	0.251	0.251	0.251	0.251
1) Equal to 21 if N/A or exceedance probability <1/250	4/250		Spectral displacement		S ₀₁ (mm)	00.00	2:00	25.00	35.00	43.00	200.00
Section 1		ı	Period		T; (s)		0.28	0.63	0.75	0.83	2,83
Structural Behaviour	aviour		2								
field base shear	V, (KN)	705.0	1.10							-	
Yield displacement	A, (mm)	10.0	1.00								
System displacement ductility	P,	4.30									
Effective response period	Terr (s)	0.83	0.90 T=0.4								
Effective Damping	ping		0.80	0							1
Method: Custom			8) u								
			2	T=0.6 T = 0.83 s	KO						
			A lettage of the control of the cont	Displacement Demand = 52.1 mm	Demand =	X					
Effective system damping		10.0%	08:0		1=15	B. OFE 9 00 0	0 0 0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	
Results		No. of London	0.20		$\bigwedge$				T=3.0		T
Spectral displacement capacity	Salve (mm)	43.0	01.0					10% critical damping	damping		T=4 S
Spectral displacement demand	SD (mm)	52.1	07:0		130%	3 120%		10%	2%		
Calculated capacity ratio	NBS	83%	. 0	100	200	(1)	300	400		200	009
with 10% critical damping	at 0.83 s		Ž	- Somm	Spec	tral Displa	Spectral Displacement (mm)	(mr			

T-CED 272 (NZ): Building %NBS calculator for non-linear pushover method

PALCOLATION SHE						5/12/
Project/Task/File No:	WEGC	EAST	BLOCK	DSA	Sheet No	of
roject Description:		•••••			Office:	
	••••••			***************************************	Computed:	DMO 18/10/20
		*******************			Check:	1 1
LTQ	UET ACTIC	M)				
A	, ,		1	rock.		
- No MS	8 8	ligue	faction	- rock.		O V
	V					0,0
						1
						X
	SOMMA	10.7				
· Foreno	la tions	ale	uld 1	be adequa	se to	bhort the
struce	ture	abov	e, an	d berild	so to me	Shore
enoug	to to	Acr Co	rate	some n	intor refle	lements
000	formale	ation	decon	age life.	safory con	).
					0	
٠٠.	FOUN	JDATI	ons c	) A.		
	+		<b>*</b>			
				O		
		76				
		11.				
	<i>O</i> ,					
O						
60						
7						
169260						
<b>3</b>						
						OPUS

ject/Task/File No: WEGC EAST ELOCK	Sheet No	of
ject Description:	Office:	40 18/09/12
	Check:	1 1
150 × 12 FLAT BRACES		
Gracle 300 MPa - fy = 310 MPa		1
9		00
Ag fg = 1500 12 2 310 = 558 x V		10
	5	
Wirm Moles: 2 lines of Mil anchors:		
22 12 mm & holes = 36 mm		
7.2.1 O.25 to A. f. =		
true = for = 450 MPa		
XO		
0-25 × 1× (150-36) × 12 × 430 = 500 =	N - G	overns.
. CAPACITY OF FLAT BANGES (150x12)	2 500 41	,
		+
- Demands on those will be	very /	and due
- Demands on these will be to the difference in stiffness between the control of malls that they	reen Utho	co, and
the con call the malls that they	re attack	ed to.
- By inspection - O.K.		

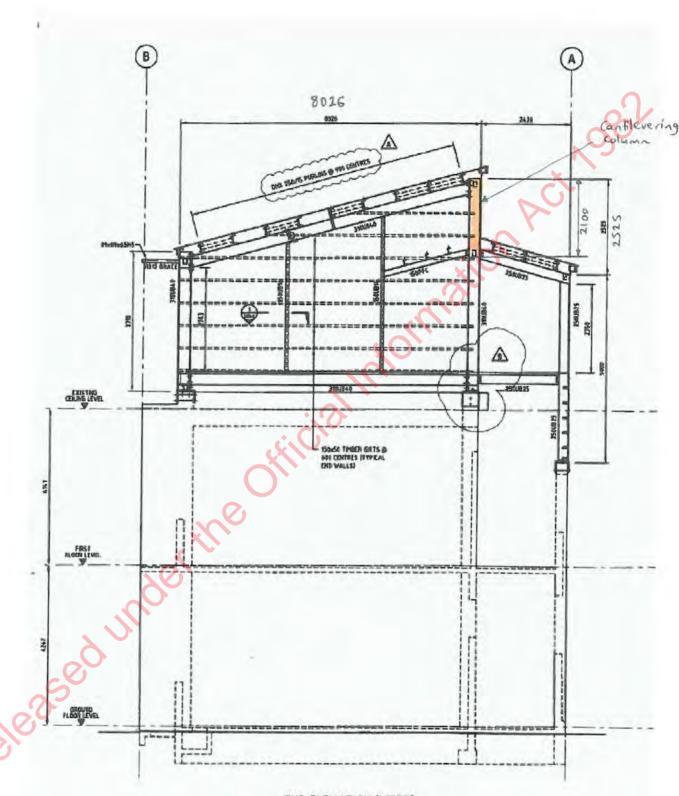



5/124

Project/Task/File No: 5-PA010.37 Sheet No of
Project Description: WECC East Wing DSA Office: Wath

Compared MIG / 11/11 /201

Computed: MJG / 11/11 /2015


Check: / /



Total 5 3104B40 columns, fied at upper and lower roof levels.

Minor axis bending capacity

fy = 320 MPa



END ELEVATION (WEST)
(VIEWED FROM OUTSIDE – PORTAL SETOUT)



5/126

Project/Task/File No:	5-PA010.37	Sheet No	0	f
Project Description:		Office:		
		Computed:	1	1
		01 1	1	1

	Computed:	1 1
	Check:	1 1
Demand		
Assess to NZS 1170.5, Section 8 - Steel fram	red on concrete	stricture.
		70
Roof		
Cladding	1 kPa	
DHS 250/15 pulins @ 900 c/s	.06 kPa	
350/13/2003		
0.056 KN/~	20-	
0.9~		
Steelwork	I kPa	
Ceiling + services 0.	2 kpa	
	0.45 kpa	
	10 10 1	
8026		
32 374		
Tibutary		
cladding		
Roof trib area = 32.374 x 8.026 = 130 m2		
Roof weight = 0.45 x 130 = 58. 5kM		
100 Weight - 014 5 x 1 50 - 501 3 x 1		
Cladding		
Aller octor control to be for		

Cladding.

Allow 0.5kPa (Lightweight timber / glazing)

Partitions are self supporting.

Cladding trib area = (8.026+32,374) x 2.1 = 42m²



Project/Task/File No: Sheet No of

Project Description: Office:

Computed: / /

Check:

Cladding Height = 0.5x42 = 21 kPa

Demand by parts

CH: = 3

Elastic demand = 3.12 x 79. S = 248 kN

Minor axis bending - allow M = Z

WEEC Project/Task/File No: Sheet No. Office: **Project Description:** Computed: PMO 116/11 12015 Check: 2nd FLOOR DIAPHRAGE CONNECTION - Relies on column bending to transfer force to anget. below: \$10 UB 40 \$ My = 138 + 320 44.1 KMm 201 KNm &C pM = 629 x 320 Py = M*1 44.12 5.6 52 KN 1.03 × 4.57 239 xV Number of columns Fy = 5+ 52 = 260 +N = 1195 XN Weight of floor (0.9+0-8) × 32.37 × 11.379 = 265 +N

Seismie coefficient = 2, tay.

Half of load on this line lostic. O.K.



Appendix B

ation Act 1987 Released under the Official Interior Photos of Building



**Detailed Seismic Assessment** 





**North Elevation** 



**West Elevation** 



Releasedui





South Elevation and Bridge



**Front Elevation Braced Frame** 







2nd Floor Classroom



**1st Floor Corridor** 





Appendix C

kormation Act. Plans of Building Released under the

