This is an HTML version of an attachment to the Official Information request 'Speed Measuring Equipment'.

 
 
 
 

 
 
NZ POLICE 
CALIBRATION UNIT 
 
 
 
 

Speed Detection Operators 
Module 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHRIS Code 2277 
 
 
 
DUT 244 
 
 

Table of Contents 
 
 
 
 
1. 
About this module ...................................................................................................................... 3 
2. Background 
................................................................................................................................ 4 
3. Radar 
speed 
detection 
................................................................................................................ 7 
4. 
Self-paced test – Radar ............................................................................................................ 17 
5. Laser 
speed 
detection 
............................................................................................................... 18 
6. Traffic 
laser 
.............................................................................................................................. 22 
7. 
Self-paced test – Laser ............................................................................................................. 24 
8. Operating 
guidelines ................................................................................................................ 25 
9. Evidential 
requirements 
........................................................................................................... 27 
10. Speed 
detection 
Code of Operations ........................................................................................ 28 
11.  Best practice guidelines - Radar .............................................................................................. 30 
12.  Best practice guidelines - Laser ............................................................................................... 31 
13.  Practical application - Radar .................................................................................................... 32 
14.  Practical application - Laser .................................................................................................... 37 
15.  Answers for self-paced test – Radar ........................................................................................ 40 
16.  Answers for self-paced test – Laser ......................................................................................... 42 
November 2001 
 
2

 
1. 
About this module 
 
 
Goal 
This module is designed to provide the theoretical basis for the 
safe and efficient operation of speed enforcement equipment. 
 
 
Objectives 
When you have completed this module you will be able to: 
  identify the requirements of the Code of Operations 
  explain: 
 
pre-deployment testing 
 
site selection 
 
safety requirements 
 
tracking history 
  outline the evidential requirements for speeding offences. 
 
 
Module Content 
This module contains the following sections: 
  background 
  radar speed detection 
  laser speed detection 
  operating guidelines 
  evidential requirements 
  speed detection Code of Operations 
  best practice guidelines for specified units 
  practical training 
  self-paced test answers. 
 
 
Module and operators manual  The manufacturer’s operational manuals for radar and laser 
speed detection systems used by the NZ Police are inappropriate 
for the New Zealand environment. For this reason this module 
and the New Zealand Operators Manual are the only documents 
detailing the manner of operation New Zealand operation. 
 
 
Information 
Should you have any questions or comments regarding this 
module please contact: 
 
Inspector Ron Phillips 
Calibration Unit 
Office of Commissioner 
Phone 04 2372484  or   Extn 42590 

 
2. Background 
 
 
 
Introduction 
Research has shown that speed is a major contributor to fatal 
and injury-causing road crashes. The Government has identified 
increasing road safety as an important and core part of police 
business. Significant improvements have been made in 
enhancing road safety in the last few years. The aim of the NZ 
Police is to ensure this trend continues by using a range of tools 
including speed detection equipment. 
 
 
Trained operators 
For police members to use speed detection equipment they must 
first be certified as a trained operator.  
 
To become a certified operator you must: 
  complete this module 
  achieve a minimum of 70% in the module theory test 
  undergo 20 hours’ practical instruction with a qualified 
instructor who will assess your competence 
  be certified as a trained operator by the Traffic Operations 
Support Group (Office of Commissioner). 
 
Twenty hours have been allocated for practical training. The 
suggested breakdown of hours is 16 hours for radar training and 
4 hours for laser training. 
 
 
Speed enforcement detection 
The speed detection operators’ module focuses on the use of 
module 
speed detection equipment. It provides an overview of the 
operating principles and policy guidelines governing the use of 
speed detection equipment. Evidential and administrative 
requirements are covered to ensure all operators are able to 
follow correct procedure. 
 
Within the module there are two short tests. These are designed 
so that you can measure your progress. At the end of the module 
you must sit a formal theory test that will be administered by 
district training staff. To pass the test you must gain a mark of at 
least 70%. If you do not achieve this you will need to revise the 
module and sit another test. 
 
District training staff will keep a record of your test results and 
enter them in your training records. 
 
 
Practical 
Once you have passed the test you will need to gain practical 
experience operating the speed enforcement equipment. This 
will take at least 20 hours and needs to be completed with a 
qualified instructor. Your district trainer has a record of 
approved instructors. 
 
The practical part of the training is very important and provides 
an opportunity for you to apply the theory in a practical setting. 
November 2001 
 
4

The qualified instructors have a training checklist they will use 
with you to guide your training and to assess your competence. 
A copy of this checklist is at the end of the module. 
 
When you have completed the practical training and 
demonstrated your competence in each area. The instructor will 
forward evidence of this to the district trainer. This will be 
entered in your training records.  
 
 
Certified as a trained 
Once you have successfully completed all parts of the training 
operator 
you will be certified. The district trainer will provide evidence 
of your training to the district strategic traffic manager who will 
advise the Traffic Operations Support Group (Office of 
Commissioner) who will issue you a numbered certificate and 
enter your details onto the national database of trained operators. 
 
You must be certified by the Traffic Operations Support Group 
and receive a certificate confirming you are a certified 
operator before you can use speed detection equipment. 
 
If for any reason you require an additional copy of this 
certificate you should contact the Traffic Operations Support 
Group directly. 
 
 
Manufacturer’s manual 
The manufacturer’s operational manuals for the various speed 
detection systems used by NZ Police are inappropriate for the 
New Zealand environment. They do not require a code of 
operations, ongoing device calibration, daily device testing, 
operator training, or a tracking history. 
 
 
Code of Operations 
In the interests of fairness, professionalism and accuracy the 
Measurement Standards Laboratory New Zealand Limited and 
the NZ Police have agreed to a Code of Operations that governs 
the operation of all speed detection equipment used by the NZ 
Police. The Code of Operations 2001 is the current code and a 
copy is contained in this module. 
 
 
Using this module 
This module focuses on two types of speed detection equipment: 
  radar 
  laser. 
 
Radar and laser describe the scientific methodology used to 
detect vehicle speed Although there are some similarities 
between the devices there are also some fundamental 
differences. For this reason this module looks at each type 
separately. The first part of the module deals with radar and the 
second with laser. It is important that you note the similarities 
and differences between the two types of device. 
 
 
November 2001 
 
5

 
Key information 
The module contains a reasonable amount of detail. This is to 
provide depth to your understanding of how the devices operate. 
You do not need to remember all the information contained in 
the module. However, there are some important things that you 
must know. To help you identify the critical information, the 
relevant sections are marked key information in the left-hand 
column. 
 
 
Self-paced tests 
Through the module you will find two self-paced tests. These 
are available for you to test your own learning. The answers to 
these tests are found at the end of the module.  
When you have finished the module and feel you have 
understood and can remember all the key information material, 
you need to sit the assessment test. 
 
 
Assessment test 
The assessment test is available from your district trainer. The 
test is administered in exam conditions — this means you will 
not have the module to help you and you will not be able to 
discuss the questions with others.  
 
You need to achieve a mark of at least 70% to pass the test. If 
this does not happen you will be required to resit the test, which 
will differ from the previous test. 
 
PHRIS 
PHRIS coding for the module is 2277. 
PHRIS coding for practical training is 2287. 
 
 
November 2001 
 
6

 
3. 
Radar speed detection 
 
 
 
Introduction 
Radar is an acronym for RAdio Detection And Ranging. 
 
Radar means the transmission of radio waves that have the 
ability to detect and provide the distance the object is away from 
the transmission source.  
 
 
History 
The concept of radar was first discovered in 1904, but it was 
 
during the Second World War that significant progress was 
made in this area of research. New Zealand scientists who had 
worked in this field during the war returned to work for the 
Department of Science and Research and extended the 
technology.  
 
The world’s first working traffic speed detection radar was 
developed in New Zealand in the late 1940s. In 1947 the first 
traffic speed radar was trailed in Wellington. 
 
From these humble beginnings radar devices have become an 
integral part of the New Zealand road safety scene.  
 
Although the models have changed and will continue to change, 
the operating principles of radar devices remain the same. 
 
The use of radar as a speed enforcement tool is not restricted to 
New Zealand. Radar speed detection devices are widely used; 
each year over 50 million enforcement notices are issued to 
speeding drivers around the world. 
 
 
Use of radar 
Radar is present in everyday life; when we make a telephone 
call, use the internet or watch television the information is 
carried, at least part of the way, by microwave. (Microwave is 
the radio frequency at which radar operates.) 
 
 
Radar theory 
The principle of primitive radar is can be explained simply. A 
beam of microwave electromagnetic energy is generated at 
super high frequency. This energy is radiated into free space 
through a antenna at the speed of light. If the energy strikes an 
object, part of the scattered energy is returned to the radar 
through the antenna. The unit processes the return signals and 
displays the information, the distance the object was from the 
antenna. 
 
Traffic radar 
Traffic radar uses very low-powered, continuous microwave 
energy. The receiver monitors the transmitter frequency and 
compares the returned frequency with the transmitted frequency. 
The change of frequency is displayed as the speed check. 
The frequency change is due to the doppler shift, which is 
explained later in the module. The receiver’s electronics change 
the frequency into speed readings.  
November 2001 
 
7

 
 
Radar components 
There are three basic components to traffic radar: 
 
  transmitter 
 
  receiver 
  antenna. 
 
 
Key information  The three components that make up traffic radar are the 
transmitter, receiver and antenna. 
 
 
 
To understand how traffic radar operates it helps to know the 
function of each of component. 
 
 
The transmitter 
The transmitter generates radio energy in the microwave 
spectrum from a low power gunn diode unit (this is the device 
used to make microwave energy). This energy is then 
channelled to the antenna with a small portion sent to the 
receiver for a comparison between the original transmitted 
signal and the received reflected signal. 
 
 
Key information  The transmitter generates energy. Most of the energy is 
channelled to the antenna, a small amount goes to the 
receiver

 
 
The antenna 
A narrow-beam, horn antenna is used to direct the microwave 
energy and collect the reflected signal . The antenna is aimed at 
the area to be monitored. The size of the antenna depends on the 
frequency or signal wavelength used. 
 
 
Key information  The antenna is used to aim the microwave beam at the area 
being monitored. 
 
 
The receiver 
The receiver is the device tuned to the transmission frequency 
 
that picks up the waves generated by the transmitter. It amplifies 
the small signal detected and produces the information as a 
speed readout.  
 
 
Key information  The receiver is the unit that displays the speed readout. 
 
 
The radar beam 
The beam of energy transmitted from the radar antenna is like a 
torch beam. The radar signal continues outward from the 
antenna until it is reflected (shined back), refracted (bent, like a 
pencil placed in a glass of water) or absorbed.  
 
The following diagrams demonstrate what happens to the radar 
beam. 
November 2001 
 
8





 
 
 
 
 
 
 
 
 
Key information  The radar beam continues outward until it is reflected, 
refracted or absorbed. 
 
 
Radar beam angle 
The width of the radar beam is normally 12 degrees. This is 
known as the main signal beam. The further the beam extends 
from the transmitter the wider it becomes. 
 
Key information  The main signal beam becomes wider the further from the 
transmitter it becomes. 
 
 
Beam range 
The radar beam could continue outward from the antenna for an 
indefinite distance. However, in reality the beam range is the 
distance that the radar signal can be reflected back from a target 
to the receiver. The range differs depending on the site. Under 
ideal conditions the device should be able to detect targets at a 
distance of one kilometre. 
November 2001 
 
9

 
Key information  The range of the radar beam differs depending on the site. 
 
 
Factors affecting range 
Atmospheric conditions such as rain, mist and fog will affect the 
radar range and the return signal. Local terrain such as hills, 
corners, fences and buildings will also have some effect.  
 
All radar units have a range or sensitivity control that can be 
adjusted to control the level of received return signal. By 
adjusting the range you can reduce the target vehicle distance. 
 
 
Key information  Radar range can be affected by atmosphere and terrain. 
Operators can alter the range by adjusting the target range 
control. 
 
 
Target reflectivity 
The size and shape of the target vehicle’s surface will affect the 
information sent back to the radar unit for processing into speed 
readings. The bigger the target the better it will reflect the signal 
back to the radar unit.  
 
A target vehicle that is small and aerodynamically designed is a 
poor reflector of a radar signal. This means it will need to be 
closer to the unit to be picked up clearly. 
 
 
Key information  The size and shape of the target vehicle affects the strength of 
the reflected signal. 
 
 
Doppler effect 
The speed radar detects a movement between the transmitted 
and received signal. This change in frequency is known as the 
doppler effect. 
 
Simply, the radar unit determines the frequency difference 
between the signal transmitted from the radar unit and the signal 
reflected back from the moving target vehicle. 
 
 
Key information  The change in frequency between the signal transmitted and 
the signal reflected back is the doppler effect. 
 
Tuning forks 
Vibrating objects produce sound waves. A tuning fork illustrates 
how a vibrating object can produce sound. The fork consists of a 
handle and two tines. When the tuning fork is hit, the tines begin 
to vibrate causing disturbances in the surrounding air molecules 
and producing a ringing sound.  
 
This is why tuning forks are used as part of the calibration and 
daily testing of the radar unit. A particular speed reading is 
confirmed when the sound (frequency) the fork produces is the 
same as the doppler frequency required. Each fork is stamped 
with an operating band (frequency) and the speed the fork will 
produce at that frequency. 
 
November 2001 
 
10


It is important to note that because the movement of air 
molecules from the fork goes from left to right you should 
always present the side of the tine to the antenna. 
 
Tuning forks should not be hit against hard objects as the tines 
will bend out of shape and lose their ability to vibrate. The new 
flat type of fork can be flicked by a finger or lightly struck 
against another fork to produce the required signal level to 
conduct daily testing. 
 
 
Key information  Tuning forks are used to simulate speed. Each fork is stamped 
with an operating band (frequency) and the speed the fork will 
produce at that frequency. They are used to check the 
accuracy of the speed reading. 
 
 
Cosine angle effect 
In both stationary and moving modes a cosine angle effect 
occurs when vehicles pass at an angle through the beam rather 
than directly in line with it. The cosine angle is the angle 
between the operator and the beam. 
 
The effect is that measured speed will always be less than true 
speed. This occurs because the measured speed will be equal to 
the true speed less than the cosine of the angle between the 
beam and direction of travel of the target vehicle. 
 
The larger the cosine angle the lower the speed. At 90 degrees 
there will be no reading as there is no relative motion between 
the axis of the antenna and the target. The cosine of a target 
travelling in a lane opposite the radar unit will always present a 
lower reading than is true, as the target will be off to the side of 
the main beam pointing down the road.  
 
 
The following table and diagram demonstrate the effect of the 
cosine angle. 
   
 
 
100 km/h true speed of target 
 
Radar antenna off 
Speed in km/h 
 
set angle to the 
 
target vehicle 
 
 
0 100 
 
10 98.48 
 
20 93.96 
 
30 86.60 
 
40 76.6 
 
As the table shows, for every degree the radar is off-set to the 
target vehicle the speed reading registers less than the true speed 
of the target vehicle. 
 
November 2001 
 
11

The difference will always be in favour of the target vehicle. 
 
 
Key information  Aiming the radar beam so that the cosine angle is minimised 
gives a more accurate reading. Any speed difference between 
true speed and the recorded speed will always be in the favour 
of the target vehicle. 
 
 
Radar – Stationary mode 
 
 
 
Site selection is extremely important when operating radar in a 
stationary mode. An operator must consider both operation and 
safety considerations when selecting a location. 
 
An ideal site is straight for about 200 meters or more, with the 
road surface slightly rising away from the radar unit and free 
from undulations. Undulations will cause fading of the return 
signal.  
 
 
Key information  When selecting a site operation and safety must be considered. 
 
 
The radar beam is like a torch light beam. When setting up, the 
operator should aim the antenna slightly towards the right-hand 
side of the road. They should listen to the doppler tone to ensure 
any targets are free from the fading that results if the antenna is 
poorly aimed or a poor site has been selected. The aiming of the 
beam is important to minimise the cosine effect and to obtain a 
greater return signal. 
 
 
Key information  Correct aiming of the antenna minimises the cosine effect. 
 
 
 
Range control 
Adjust the range control to the required level to monitor target 
vehicles. 
 
 
Key information  The range control should be adjusted to suit operational 
conditions. 
 
 
Site safety 
When setting up a stationary site the operator should do so 
without interfering with other traffic movements. The site 
should allow the operator room to stop the offender using hand 
signals without the need for pursuit. Safe and legal parking 
should be available for the vehicles stopped.  
 
The operator must make sure they and the target vehicle and 
driver are safe when stopping them. 
 
Reflective jackets maximise the operator’s visibility to road 
users and enhance safety. They should be worn at all times. 
November 2001 
 
12


 
Key information  The operator is responsible for their safety and the safety of 
other road users.  
 
 
Radar – Moving mode 
 
 
 
The basics of stationary radar apply to radar used in moving 
mode. However, there are some additional factors that must be 
considered. 
 
As a stationary radar, the antenna receives only one signal. 
However, in moving mode there are two received signals both 
with different doppler return frequencies. 
 
 
Opposite lane mode 
The operating principles of “opposite lane mode” are simple. A 
single radar frequency is transmitted from the moving patrol 
vehicle. A portion of this signal is reflected off the ground about 
15 metres directly in front of patrol vehicle and returned to the 
antenna. This is called “ground speed” and is displayed in the 
patrol speed window as low doppler frequency shift. 
 
The approaching target vehicle reflects a portion of the 
transmitter signal, which is high doppler shift. As both vehicles 
are moving towards each other the doppler shift frequencies 
combine. 
 
 
 
Example: A patrol vehicle travelling at 90 km/h and a target 
vehicle travelling at 130 km/h produce a combined speed of 
220 km/h. However, within the radar’s electronic processor 
circuits, the radar unit subtracts the patrol ground speed from the 
combined speed. This results in a target speed of 130 km/h. 
 
It is very important that ground speed is obtained before any 
target vehicle enters the beam. Without a ground speed reading 
the unit cannot produce a target vehicle reading. Operators must 
constantly monitor the patrol vehicle’s calibrated speedometer 
to ensure the radar unit is displaying the correct ground speed. 
 
Ground speed may be lost during heavy rain as the rain droplets 
may absorb the radar signal. In this case operation of the device 
should cease until the rain eases or stops. 
 
 
November 2001 
 
13

Ground speed 
For the radar to operate in moving mode it must be able to 
detect the ground speed of the patrol vehicle. There are times 
when the traffic radar is unable to process ground speed and 
when this happens the unit will show no speed readings. Ground 
speed will be lost if: 
  the vehicle being detected is travelling at the same speed as 
the patrol vehicle 
  there is heavy rain 
  the patrol vehicle is following a large vehicle, in which case 
the ground speed beam may not obtain a reflection off the 
road 
  the range control is turned down too low. 
 
 
Key information  Ground speed must be obtained before any target vehicle 
enters the beam. 
 

 
Same-lane mode 
Same-lane mode is used for vehicles travelling ahead of and in 
the same direction as the patrol vehicle. The unit calculates the 
difference between the ground speed of the patrol vehicle and 
the target vehicle and this is depicted on the speed readout. 
 
 
Deployment 
 
Tracking history 
Obtaining a proper tracking history of the target will effectively 
eliminate errors. Tracking history for all radar contains three 
main elements: 
  visual observation 
  audio confirmation 
  radar verification. 
 
Visual observation 
There are three parts to visual observation, the operator must: 
1  identify the target vehicle and continue to monitor its travel 
2  confirm the target vehicle is within the radar’s range 
3  estimate the target vehicle’s speed. 
 
 
Audio confirmation 
There are three parts to audio confirmation, the operator must: 
1  listen for a clear doppler tone 
2  check the tone is consistent with the speed 
3  check the level of the signal heard is strong and not 
fluctuating in audio content. 
 
Radar verification 
There are four parts to radar verification: 
1  the initial reading is consistent with the operator’s visual 
observation and operator-estimated speed 
2  a steady target reading 
3  readings consistent with visual observation and audio tone 
4  ground speed readings confirmed by patrol speedometer. 
 
When the operator is satisfied the target vehicle is producing the 
correct reading they should lock the reading and take the 
appropriate enforcement action. It is not always possible to lock 
the target vehicle’s speed. However, failure to lock the speed 
will not prevent normal enforcement action being taken. 
November 2001 
 
14

 
 
Possible sources of 
In the super high frequencies of the spectrum where traffic radar 
interference 
operates (24-38 GHz) the environment is relatively free of noise 
and other non-natural sources of interference. However, 
interference may be experienced and it is important to know 
how this occurs and what to do to eliminate it. 
 
 
 
Many articles have been written about the types of interference 
that will cause traffic radar to produce erroneous readings, 
including:  
  street lighting systems 
  radar detectors 
  high voltage power lines 
  motor vehicle radiator fans 
  power transformers 
  neon signs 
  aircraft radar 
  microwave ovens. 
 
These theories concerned the NZ Police and the Measurement 
Standards Laboratory of New Zealand (MSLNZ). Tests were 
conducted to determine if the potential interference sources 
listed above had any effect on the traffic radar equipment used 
by the NZ Police. No affects were found. A point to consider is 
that aeroplanes contain more sensitive radar equipment than 
traffic radar units. If the items listed above generated significant 
interference radar would be too dangerous for planes to use. 
 
Even though some conditions may cause occasional intermittent 
readings, most interference sources do not produce any doppler 
tone. If a clear doppler tone is obtained this will help to 
eliminate possible sources of interference. By listening to the 
audible signal the officer can determine: 
  when the target entered the beam 
  if the estimated speed of the target is consistent with 
doppler tone 
 
Note the higher the tone, the faster the target vehicle. 
 
 
Radio transmitters 
Radio energy detected near the traffic radar unit will blank off 
any target readings, displaying “rfi”. This tells the operator that 
radio energy is present. 
 
The radio energy from a patrol car radiotelephone or cross-link 
will prevent readings when the radiotelephone is transmitting. 
 
 
Radio jammers 
Over the years many people have tried to defeat radar speed 
equipment. Most of these radio jamming devices do not work 
and are nothing more than gimmicks. Units that do work require 
large amounts of radar energy to be transmitted and are 
prohibited in New Zealand by the Radio Communications 
regulations. 
 
November 2001 
 
15

 
Radar detectors 
Radar detectors have a receiver that picks up the radar unit’s 
transmitted energy and alerts the driver. 
 
Operating the radar in hold mode means the transmitter is turned 
off until required by the operator. The motorist with a radar 
detector cannot be alerted to the radar when it is operating in 
hold mode.  
 
The operator can take the unit out of hold mode to obtain a 
speed check and produce a valid speed-reading before the driver 
has time to react. 
 
 
November 2001 
 
16

 
 
4. 
Self-paced test – Radar 
 
 
 
1.   
What are the three units that comprise traffic radar? 
 
2.   
There are three things that can happen to a radar wave, what are they?  
 
3.   
How can you minimise the cosine effect when using radar? 
 
4.   
Who is permitted to use radar speed enforcement equipment? 
 
5.   
What is the antenna component of traffic radar used for? 
 
6.   
Does the width of the beam remain the same the further from the transmitter it is 
emitted? 
 
7.   
What factors can affect the radar range? 
 
8.   
How can an operator reduce the target range? 
 
9.   
What affect does vehicle size and shape have on the strength of the reflected signal? 
 
10.   
There are two major things that you need to consider when selecting a stationary 
operating site, what are they? 
 
11.   
Establishing tracking history for all radar speed checks requires three elements, what 
are they? 
 
12.   
Within each of the three elements required to establish tracking history there are a 
number of parts. Detail what these are for each tracking history element. 
 
13.   
What are the tuning forks used for? 
 
14.   
What is the doppler shift? 
 
15.   
Why is a certified speedo required when operating traffic radar? 
 
16.   
What reasons are there for loss of ground speed? 
17.   
Is it a requirement to lock every speed reading when conducting an enforcement stop? 
 
 
November 2001 
 
17

 
 
5. 
Laser speed detection 
 
 
Introduction 
Laser is an acronym for Light  Amplification by Stimulated 
Emission of Radiation. A laser is a concentration of light energy 
into a narrow beam. 
 
 
Principles of laser energy 
To better understand how laser energy operates it helps to 
understand the principles of light. Light is defined in 
wavelengths similar to radio waves. The shorter the wavelength, 
the higher the frequency. Visible light falls into a fairly narrow 
section of the electromagnetic wave spectrum with infra-red 
light at one end with the longest wavelength, and ultraviolet 
light at the other end with the shortest wavelength. 
 
As with radio waves, light waves can be reflected, refracted or 
absorbed. Reflection of light is commonly seen in day-to-day 
life. Refraction is when light is bent. Absorption is when light is 
incorporated into the surroundings. 
 
 
Key information  A laser is a concentration of light energy into a high intensity 
narrow beam. 
 
 
Lasers 
To build a laser we begin with a light source. This is placed in a 
small cavity with two mirrors facing each other with the light 
source in between. As the light reflects from one mirror to the 
other, it passes through the light source and concentrates its 
energy. 
 
Laser light is found only in technology, never in nature. The 
beam used is very narrow, much narrower than other light 
sources such as a torch. It is also monochromatic (a single 
wavelength and colour) and its narrow beam expands only 
slightly over distance. 
 
 
Traffic laser 
While the traffic laser and traffic radar have much in common 
there are also many differences. Similarities and differences are 
highlighted throughout this section of the module. 
 
The traffic laser is an adaptation of laser to measure vehicle 
speed. From the traffic laser unit laser light is directed through 
focusing lenses toward the intended target. 
 
The traffic laser beam is very small. Instead of radiating out like 
a torchlight (or radar beam) the line of laser light is very straight 
with little divergence. This allows the operator to aim the traffic 
laser at target vehicles much further away than when using a 
traffic radar with very high levels of accuracy. 
 
 
November 2001 
 
18

Components 
Unlike the traffic radar, the traffic laser is one unit. This laser 
unit transmits the laser beam and receives it. The internal 
computer calculates the target vehicle’s speed from the changing 
distance readings received. 
 
 
How it works 
The operator aims the traffic laser at the target vehicle using the 
unit aiming device. The laser beam is emitted in pulses. When 
each laser pulse makes contact with the target vehicle the laser 
beam is reflected back to the laser unit. The internal computer 
calculates the time between each pulse and the change in 
distance between the unit and target vehicle. This enables the 
computer to accurately calculate the change in each pulse 
(time/distance) and provide a readout of the target vehicle’s 
speed. 
 
The traffic laser can be used to check the speed of vehicles 
approaching the laser and vehicles that are moving away from 
the laser. Where vehicles are moving away from the unit this is 
indicated by a – sign in the display. 
 
 
Beam range 
In theory the laser beam will continue outward for an indefinite 
distance. However, in reality the beam range is the distance that 
the laser beam can be reflected back from the target to the laser 
unit, normally about 800 metres. 
 
 
Measurement of distance 
Traffic laser devices can be used to measure distance. The 
accuracy of this type of device is limited to +/- 1 metre over all 
distances displayed. It may be used in this way at crash scenes 
and for engineering purposes. 
 
 
Key information  The laser beam extends outwards for an indefinite distance 
unless it is reflected or refracted. 
 
 
Site selection 
There are a number of things that need to be taken into account 
when selecting a laser operating site, including: 
  the cosine angle 
  having a clear line of sight 
  weather conditions 
  whether the operation is from inside the patrol vehicle 
  movement of the unit. 
 
 
Key information  When selecting an operating site the operator needs to 
consider: 
  the cosine angle 
  having a clear line of sight 
  weather conditions 
  whether the operation is from inside the patrol vehicle 
  movement of the unit. 
 
 
November 2001 
 
19

 
Cosine angle 
As explained in the radar section, the cosine angle is the angle 
between the operator and the beam. The position of the traffic 
laser to the roadway creates an angle that reduces the speed 
reading of the target vehicle. The greater the angle the greater 
the effective speed reading. While the angle can not be 
eliminated (to do so the operator would need to be in the middle 
of the road), it can be minimised by the operator’s careful 
positioning and aim. 
 
 
Key information  Correct sighting of the laser minimises the cosine effect. 
 
 
Clear line of sight 
The operator must have a clear line of sight to the target 
vehicle.  
 
That means the operator must see the target vehicle clearly 
throughout the speed check. If their line of site is blocked or 
temporarily interfered with the computer will disregard all data 
and no speed reading will be displayed. If the operator can see 
the object, the laser can see the object; if the operator cannot see 
the object, the laser will not see it either. 
 
 
Key information  There must be a clear line of sight to the target vehicle. 
 
 
Weather conditions 
Weather conditions are an important consideration in the 
 
operation of the traffic laser. Fog, snow and heavy rain have the 
 
potential to interfere with the laser’s operation. Therefore, traffic 
laser is not to be used in fog, snow or heavy rain. 
 
 
 
 
Key information  Traffic laser is not to be used in fog, snow or heavy rain
 
 
Operation from inside 
The windscreen and side windows of the patrol vehicle can 
vehicles 
affect the maximum range of the traffic laser. While the system 
is designed to operate through windows, window tinting, 
infrared and ultraviolet protections can reduce the effective 
range of traffic laser. However, while range is affected, the 
accuracy of the speed reading is not. 
 
The best way to use the traffic laser is outside the vehicle or 
through an open vehicle window. 
 
 
Movement of vehicle 
Operator movement will affect the traffic laser. Where the 
device is not held firm, keeping motion to a minimum, the unit 
will not display a speed reading. The reading will return when 
the device is stabilised. 
 
 
November 2001 
 
20

Other factors 
sweep effect occurs when an operator changes aiming points 
while conducting a vehicle speed check. When this happens, the 
unit will not display a reading. To prevent this happening the 
operator must aim at a single point on the target vehicle for the 
entire check. 
 
 
 
Reflection influences occur on very hot days by heat rising and 
 
causing reflection off the road, or from water lying on the road. 
 
To avoid this influence, the operator should aim at the vehicle 
 
and pay attention to any changes in the speed reading. A good 
 
tracking history will verify the speed readings are correct. 
 
 
 
 
Night operation and headlights will reduce the range of the 
traffic laser. The headlights of newer model cars emit high 
levels of infrared light, so may interfere with the laser’s ability 
to detect the reflected laser pulse. To avoid this problem the 
operator should aim between the headlights at the number plate 
area on the target vehicle. 
 
 
Target vehicle 
Similar to using the traffic radar, the range of the laser beam 
will depend on the target vehicle’s size and shape. 
 
 
 
 
 
 
 
 
 
 
A large flat truck acts as a very good reflector of signals. 
 
 
 
 
 
 
 
Sports cars with an aerodynamic design act as poor reflectors. 
 
November 2001 
 
21

 
 
6. Traffic 
laser 
 
 
 
Introduction 
The traffic laser can be operated only as a stationary device. 
 
It may be used from inside or outside the patrol vehicle. 
 
 
Key information  The traffic laser can be used only as a stationary device. 
 
 
Operating procedures 

To maximise the deterrent effect of speed detection through 
laser and ensure the safety of the public, the occupants of the 
target vehicle and police, the following guidelines have been 
developed. 
 
 
 
Where traffic volumes are heavy only vehicles travelling on the 
same side as the parked patrol vehicle are to be targeted. 
 
 
Motorcycle use 
Lasers are not to be operated from motorcycles. 
 
 
Tracking history 
Like the radar, the traffic laser is only a tool used by the officer. 
To establish that the speed check is accurate the operator must 
establish a tracking history for the target vehicle. Tracking 
history is obtained by three elements: 
  visual estimation of speed 
  audio tone confirmation 
  comparison of the digital readout with the operator estimate 
of speed. 
 
 
Key information  Tracking history must be established using: 
  visual estimation of speed 
  audio tone confirmation 
  comparison of the digital readout with the operator 
estimate of speed. 
 
 
Sources of interference 
Unlike radar devices, interference sources such as radios and 
power lines do not have any effect on laser speed devices. 
Anything the operator can see, the laser can see. If the operator 
cannot see, the laser cannot see, for example, if smoke is 
blowing across the road and blocking the operator’s view, the 
laser will be prevented from detecting a target through the 
smoke.  
 
 
Locking on speed 
Operators should lock on the speed reading and maintain it on 
the device until the offender has had the opportunity to view the 
reading. The only exception to this is when another officer is 
November 2001 
 
22

operating the device and is remote from the officer stopping the 
offender. In this case a note should be made of the registered 
number of the vehicle, vehicle speed and/or distance and time. 
 
 
Recording speed readings 
The speed and distance at which the vehicle was checked should 
be recorded on all offence notices, for example 130km/h at 400 
metres. 
 
 
Targeting vehicles 
Officers should target vehicles travelling on the same side of the 
road as the parked police vehicle in areas where traffic volumes 
are heavy. 
 
 
Operating position 
Officers may operate the device from any position, provided a 
second patrol in radio contact is stationed on the road and is 
responsible for stopping the offender. 
 
 
Targeting traffic travelling 
On roads with low traffic volumes and speeds restricted to no 
both ways 
more than 70 km/h, officers may target vehicles travelling in 
any direction provided the method employed to stop the 
offender is safe for all parties. 
 
 
 
 
November 2001 
 
23

 
 
7. 
Self-paced test – Laser 
 
 
 
1. 
What sort of beam does a laser use? 
 
2. 
When selecting a site for operating a traffic laser what factors should be taken into 
consideration? 
 
3. 
The traffic laser should not be used in certain weather conditions. Name these 
conditions. 
 
4. 
What happens to the range if the laser is used through the windscreen of a patrol 
vehicle? 
 
5. 
What effect does using the laser through the windscreen of a patrol vehicle have on 
the accuracy of the unit’s speed reading? 
 
6. 
Where on a target vehicle should the laser be aimed? 
 
7. 
What effect do power lines have on laser units? 
 
8. 
When operating a laser how can the cosine effect be minimised?  
 
9. 
What effect does operator movement have on the target vehicle’s speed reading? 
 
10. 
When operating laser devices at night, what additional factors should operators 
consider? 
 
11. 
Describe the effect that vehicle size and shape have when a traffic laser is operated. 
 
12. 
Which mode may the traffic laser be operated in? Stationary mode, moving mode or 
both? 
 
13. 
What elements are required to establish tracking history? 
 
 
 
November 2001 
 
24

 
 
8. Operating 
guidelines 
 
 
 
All speed enforcement devices used by the NZ Police are 
Accuracy 
required to have regular accuracy checks. The following details 
what checks are carried out and when they occur. 
 
 
Certificate of accuracy 
Section 146 of the Land Transport Act 1998 requires all 
operational speed detectors’ certificates of accuracy be issued 
within 12 months of the date the device is to be used in the 
detection of offences. Only units with current certificates of 
accuracy may be operated. 
 
A series of electronic and road tests form the basis of the 
certificate of accuracy. The responsibility for testing and 
certification rests with the Police Calibration Unit, an 
International Standards Accredited Laboratory, based in 
Wellington. 
 
All speed enforcement devices are calibrated every year on a 
district-by-district  basis or when a device has been serviced. 
Whenever a device is serviced the unit is re-calibrated before 
being placed back in service. 
 
 
Key information  A certificate of accuracy is required for all speed enforcement 
units. This must be issued within 12 months of the date the 
device is to be used. 
 
The unit must be checked to see if currently certified before it 
is deployed. 
 
 
Speedo certificate 
All police vehicles being used in conjunction with radar speed 
detection must have a current speedo certificate of accuracy. 
Section 146 of the Land Transport Act 1998 requires all speedo 
certificates of accuracy to be issued within 12 months of the 
date the device is used in the detection of offences. 
 
Operators using radar devices must check that the vehicle they 
are using has a current certificate of accuracy. This check is to 
be carried out before deployment. Deployment is the 
commencement of each shift. 
 
 
Key information  A speedo certificate of accuracy is required for all vehicles 
used to operate radar units. This must be issued within 12 
months of the day the vehicle is being used in conjunction with 
radar equipment. 
The speedo certificate of accuracy must be checked before the 
unit is deployed. 
 
November 2001 
 
25

 
Testing 
At the beginning of each shift operators must conduct the series 
of tests prescribed in the best practice guidelines to ensure the 
device is operating correctly. This means at the beginning of 
every shift.  
 
Pre-deployment tests include internal circuitry tests and other 
tests specified in the best practice guidelines for each device. A 
copy of the best practice guidelines for each device is at the end 
of this module. 
 
The operator must record the test results in the device logbook. 
If the speed detection unit fails any checks it is not to be used. 
 
 
Key information  The operator must complete the pre-deployment tests before 
using the device. Results of the tests must be recorded in the 
logbook. If the unit fails any checks it must not be used. 
 
 
Logbooks 
Operators must complete the following information in the unit 
logbook: 
  member’s name and QID 
  date and time of operations 
  test results 
  location 
  total hours of use 
  signature of operator 
 
The operator must fill in a separate log sheet for each day of 
operation. 
 
 
 
Faulty units 
If the device fails any tests it should not be used. The unit must 
be returned to the New Zealand service agent who has been 
appointed by the manufacturer. 
 
When an instrument used in the testing of a speed enforcement 
device (for example, a tuning fork) malfunctions then both the 
unit and all testing equipment should be packaged together and 
sent to the New Zealand service agent. 
 
Details of the authorised service agents can be obtained from the 
Police Calibration Unit. 
 
After servicing by the agent, the unit will be re-calibrated by the 
Police Calibration Unit before being returned to the district. All 
costs associated with repair will be charged to the district. 
 
November 2001 
 
26

 
9. Evidential 
requirements 
 
 
 
Documentary evidence 
To comply with evidential requirements the operator will need: 
   a copy of the speed device logbook relating to the day in 
question  
  a copy of the certificate of accuracy issued within a year of 
the date of the offence 
  a copy of the certificate of accuracy for the patrol vehicle 
used in the operation of the radar device or  
  a copy of the certificate of accuracy for the patrol vehicle 
used for the weekly check in the case of a laser device. 
 
 
Evidence in court 
The operator must be able to give in evidence that: 
  they are an approved speed enforcement operator 
  they conducted the required tests for the unit and found it to 
be working correctly 
  a tracking history was established for the target vehicle 
  the code of operations was complied with. 
 
 
 
November 2001 
 
27

 
10.  Speed detection Code of Operations 
 
 
This Code of Operations governs the operation of all speed detection equipment used by the New 
Zealand Police. It has been jointly prepared and agreed to by the Measurement Standards 
Laboratory of New Zealand (MSLNZ) and the New Zealand Police. 
 
 
Operators 
 
1 Trained 
Operators 
Except for the purposes of instruction, speed detection equipment is to be operated only by 
members of the NZ Police who have: 
  completed the speed detection operators module  
  achieved a minimum of 70% in the module theory test 
  undergone 20 hours, practical instruction with a qualified instructor  and demonstrated 
competence 
  been certified as a trained operator by the Traffic Operations Support Group (Office of 
Commissioner). 
 
Former members of the Traffic Safety Service who completed training in the use of speed 
detection equipment prior to 1992 are deemed to be qualified operators.  This covers members 
whose identification numbers begin E002 up to and including F116. 
 
 
2 Qualified 
Instructors 
District Strategic Traffic Managers have the authority to appoint qualified instructors.  To be 
appointed as a qualified instructor, staff must have been certified as a trained operator and: 
  Have spent at least two years consistently operating speed detection equipment 
  are currently using speed detection equipment as part of their duties 
  have the ability to train others 
 
Qualified instructors must be registered with the Traffic Operations Support Group (Office of 
Commissioner) before taking up a qualified instructor role. 
Equipment 
 

Certificate of Accuracy 
Section 146 of the Land Transport Act 1998 requires all operational speed detectors certificates of 
accuracy to be issued within 12 months of the date used in the detection of offences.  Only units 
with current certificates of accuracy may be operated. 
 
A series of electronic and road tests form the basis of the issue of the certificate of accuracy. The 
responsibility for testing and certification rests with the Police Calibration Unit, an International 
Standards Accredited Laboratory, based in Wellington. 
 
November 2001 
 
28

4 Speedo 
Certificate 
All police vehicles being used in conjunction with radar speed detection and the field testing of 
laser speed detection equipment must have a current speedo certificate of accuracy.  Section 146 
of the Land Transport Act 1998 requires all speedo certificates of accuracy to be issued within 12 
months of the date used in the detection of offences. 
 
5 Servicing 
Repairs and servicing are only to be carried out by authorised service agents.  Details of 
authorised service agents are maintained by the Calibration Unit. 
 
Pre-deployment 
 
6 Testing 
At the beginning of each deployment operators must conduct the series of tests prescribed in the 
best practice guidelines to ensure that the device is operating correctly.  The operator must record 
test results in the device logbook.  If the speed detection unit fails any checks it is not to be used. 
 
Deployment 
 
7 Tracking 
History 
A tracking history of a vehicle must be established.  Tracking history for all speed detection units 
contains three main elements: 
 
visual observation 
 
audio confirmation 
 
verification by a speed detector. 
 
To eliminate errors effectively, all three elements must be present for each speed check. 
 
For radar units operated in moving mode, the vehicle ground speed must be confirmed by certified 
speedometer. 
 

Multiple Vehicles in Beam 
Where there is more than one vehicle in the beam, enforcement action may be taken, providing the 
operator can give evidence relating to the tracking history of other vehicles and the offender’s 
speed. 
 
9 Fairness 
Operators must use their training and experience to ensure that there are no significant sources of 
reflection or interference in the vicinity of the offence.  If there is ever any doubt concerning the 
speed check or the operation of the speed detection unit, no action is to be taken. 
 
 
……………………………………………. ……………………………………………… 
 
Dr 
Tim 
Armstrong 
   Steve 
Fitzgerald 
Manager Time and Frequency Standards 
National Manager, Road Safety 
Measurement Standards NZ Ltd 
 
NZ Police 
 
Date : 25 September 2001 
 
 
Date :  25 September 2001 
November 2001 
 
29

 
11.  Best practice guidelines - Radar 
 
 
 
Pre-deployment tests 
These are tests that are carried out before commencing speed 
enforcement patrol. 
 
 
  Check the device is certified. A sticker is attached to the 
unit that needs to be visually checked to confirm the date 
for next calibration is in the future. 
 
 
  Check the speedo of the patrol vehicle has a current 
certificate of accuracy. This provides the speedo readings 
are the true speed readings for the patrol vehicle. 
 
 
  Switch on the device. Ensure all segments of the display are 
operating. As the unit is turned on it will automatically run 
through a series of internal tests. If these tests fail or if any 
segment of the unit readout is not operating check to see the 
power source and connections are in place. Turn the device 
on again. If these tests fail again remove the unit from 
service and forward it to the service agent. 
 
 
  Complete the tuning fork tests. The details of how these 
tests are completed are contained in each device’s NZ 
Police Operators Manual. Record the results in the logbook. 
Tuning fork tests are completed for each antenna. 
 
 
 
Note: all antennas must be checked. 
 
 
Deployment tests 
These are the tests that are completed while the unit is being 
used in moving mode: 
 
 
  Confirm patrol vehicle speed is consistent with the speed 
readout on the unit within +/- 3 km/h. This is achieved by 
travelling at a consistent speed, appropriate to the speed 
limit being operated in, and checking that the true speed 
(according to the certificate of accuracy) is the one 
displayed on the readout. Record the results in the logbook. 
 
 
November 2001 
 
30

 
12.  Best practice guidelines - Laser 
 
 
 
Pre-deployment tests 
These are tests that are carried out before commencing speed 
enforcement patrol. 
 
 
  Check the device is certified. A sticker is attached to the 
unit that needs to be visually checked to confirm the date 
for next calibration is in the future. 
 
 
  Turn the unit on and check all display segments are 
operating. The device will conduct a number of self-tests, 
commencing automatically. If the device is not operating or 
if readout displays are not functioning check the power 
supply and retest the unit. If these tests fail again remove 
the unit from service and forward it to the service agent. 
 
 
  Conduct the sight alignment test. This is carried out every 
day the device is used. Select a pole or similar fixed point 
marker and aim the unit sighter to the centre of the fixed 
object; record the distance. Move the aim of the laser to the 
left-hand side of the fixed point and check that the unit 
ceases the reading on the fixed point as soon as the aim is 
moved. Repeat this test but instead of moving the aim left, 
move to the right-hand side of the fixed point. Repeat twice 
more, moving the aim above and below the fixed point. The 
measurement displayed on the readout unit must be 
recorded in the logbook. 
 
Weekly testing 
  On a weekly basis the laser unit readout needs to be 
checked using a drive though by a patrol vehicle with a 
certified speedo. This is carried out by having the driver of 
the vehicle drive at a steady speed towards the laser 
operation area. The speed will be relevant to the area of 
operation. The driver should flash their headlights or advise 
using the radio when the vehicle speed is steady and the 
laser operator will check the speed. The member using the 
laser will advise the vehicle driver of the results of the 
speed check. The driver will advise the speed they were 
travelling at after checking the certificate of accuracy to 
determine the true speed. Where the margin of error exceeds 
+/- 3 km/h the unit is to be withdrawn for servicing. The 
results of the check must be recorded in the logbook 
(vehicle speed/checked speed), for example 64/65; 46/46; 
75/75. 
 
 
November 2001 
 
31

 
 
13.  Practical application - Radar 
 
 
 
Training 
The code of operations requires members to receive 20 hours’ 
practical training in the operation of speed enforcement 
equipment. This consists of both radar and laser training. The 
suggested breakdown of hours is 16 hours for radar and 4 hours 
for laser. The following provides details of what operators must 
be able to demonstrate before they can be assessed as competent 
users. 
 
 
Pre-deployment tests  
Pre-deployment refers to the beginning of each shift. 
 
Certification 
The operator must: 
  Check the certification sticker on the side of the device for 
the expiry date. 
  Explain that if the date is current the device can be used, 
otherwise the device must be recertified before use. 
  Identify who carries out recertification. 
  Check the certificate of accuracy for the speedo of the patrol 
vehicle and determine its status — the test date must be 
within 12 months from the date of operation. 
  Identify the difference, if any, between true vehicle speed 
and actual vehicle speed readings.  
  Explain that for speed enforcement the true speed as 
described in the certificate of accuracy is the speed used for 
testing the device. 
 
 
 
Unit testing  
The operator must: 
  Assemble the radar device and install it in the vehicle. 
  Connect cables and power supply correctly. 
  Turn the device on and allow it to run its internal testing 
sequence. 
  Check all readings are displayed completely, that means 
there are no missing portions of letters or numbers. 
  Explain how to recheck and retest the device if the power 
supply or readout does not work, by: 
  rechecking cables  
  checking connections  
  confirming the power source connection 
  turning the device off and restarting it 
  proceeding with the internal test sequence.  
 
 
November 2001 
 
32

 
 
Tuning fork tests  
The operator must: 
  Remove the tuning fork from storage. 
  Confirm the serial numbers on the tuning fork are the same 
as listed on the certificate of accuracy for the radar device. 
  Record the tuning fork’s serial numbers in the logbook. 
  Conduct the tuning fork test sequence as detailed in the unit 
operators manual. 
  Record the results of the tuning fork tests in the logbook. 
  Conduct the testing sequence for each antenna. 
 
 
Deployment tests 
Moving mode  
The operator must: 
 
  Confirm the patrol vehicle speed is consistent with the 
speed readout on the unit within +/-3 km/h. This is achieved 
by travelling at a consistent speed, appropriate to the speed 
limit of the area and checking that the true speed (according 
to the certificate of accuracy) is the one displayed on the 
readout.  
  Record the results in the logbook. 
 
 
Target identification 
The operator must identify the target vehicle when it comes into 
the beam. 
 
 
Tracking history 
The operator must demonstrate that they are able to establish the 
tracking history of a vehicle. This means they: 
  See the target vehicle and specify what it looks like, for 
example, a red Toyota or blue Mazda. 
  View the readout on the unit and identify to which vehicle it 
relates. 
  Hear the change in audio (doppler tone) to indicate an 
increase or decrease in speed. 
 
 
Cosine effect 
The operator must: 
  Identify the target vehicle (using tracking requirements). 
  Use the antenna to demonstrate how a change in cosine 
angle affects the speed reading. 
 
 
Speed checks 
The operator needs to be able to gauge the speed of vehicles 
visually. 
 
Day 
  In stationary mode, the instructor covers the speed readout 
and the operator estimates the speed. The instructor checks 
this against the readout. The difference between the two 
speeds needs to be within +/- 8 km. 
  The operator must achieve 10 consistent speed 
confirmations within +/- 8km. 
  Repeat this exercise, with the operator covering the readout 
with the doppler tone turned down. The difference between 
the speeds needs to be within +/- 8 km. 
November 2001 
 
33

  The operator must achieve 10 consistent speed 
confirmations within +/- 8km. 
 
Night 
  In stationary mode, the instructor covers the speed readout 
and the operator estimates the speed. The instructor checks 
this against the readout. The difference between the two 
speeds needs to be within +/- 8 km. 
  The operator must achieve 10 consistent speed 
confirmations within +/- 8km.  
  Repeat this exercise, with the operator covering the readout 
and the doppler tone turned down. The difference between 
the speeds needs to be within +/- 8 km. 
  The operator must achieve 10 consistent speed 
confirmations within +/- 8km. 
 
 
Site selection 
The operator must select a site for operation of the radar in 
stationary mode. Selection must include the following 
considerations. 
 
 
Parking 
The operator must consider: 
  Legal parking for the patrol vehicle. 
  Location safety for the patrol vehicle, including the officer’s 
ability to open the patrol car door safely, exit the patrol car, 
approach the offending vehicle, and conduct an enforcement 
stop. 
  The range of radar operation within 250 metres of any 
change in speed limit. 
  Legal parking in which to stop vehicles. 
  Safe parking for offending vehicles, including the ability of 
the driver to safely exit their vehicle and a safe approach for 
the officer. 
  Day-time and night-time operation issues. 
 
 
 Site 
The site must: 
  Be straight enough to allow vehicles to be detected for at 
least 100 metres. 
  Provide sufficient distance to allow the speed to be checked 
and the operator to exit the vehicle and conduct an 
enforcement stop. 
 
 
Unit set up 
Aim 
The operator must check the unit antenna: 
  is aimed and set up to: 
  detect vehicles 
  minimise the cosine angle and 
  the range is adjusted so that it is appropriate for the site  
 
 
November 2001 
 
34

 
Moving mode 
The operator must: 
  Identify ground speed on the readout. 
  Confirm the ground speed and speedo readout are consistent 
(given the certificate of accuracy). 
  Place the unit in hold mode using the hold button. 
  Release the lock button for device operation. 
  Identify the target vehicle and its speed. 
  Establish a tracking history for the target vehicle using the 
three elements - visual, audio and readout. 
  Lock the target vehicle speed on the unit. 
  Indicate the difference between multiple vehicles in the 
beam and a single vehicle. 
 
 
Patrol stops – moving mode 
Same lane 
 
The operator must: 
  Identify a target vehicle where its speed exceeds the posted 
speed limit. 
  Establish a tracking history by telling the instructor how it 
meets audio, visual and readout requirements. 
  Lock on the target vehicle’s speed. 
  Activate red and blue lights. 
  Pull out into the flow of traffic safely. 
  Indicate to the target vehicle to stop. 
  Park safely. 
  Ensure the reflectorised jacket is worn. 
  Exit the patrol vehicle after checking for traffic. 
  Approach the target vehicle’s drivers door. 
  Keep following traffic in line of sight when speaking with 
the driver. 
 
Patrol stops – moving mode 
Opposite lane 
 
The operator must: 
  Identify a target vehicle where its speed exceeds the posted 
speed limit. 
  Establish tracking history by telling the instructor how it 
meets audio, visual and readout requirements. 
  Lock on the target vehicle’s speed. 
  Activate red and blue lights. 
  Complete a U-turn safely and with due consideration to 
minimise stress on the patrol vehicle (for example, speed is 
reduced before turning, the kerb is not mounted when 
turning). 
  Indicate to target vehicle to stop. 
  Park safely. 
  Ensure reflectorised jacket is being worn. 
  Exit patrol vehicle after checking for traffic. 
  Approach target vehicle’s drivers door. 
  Keep following traffic in line of sight when speaking with 
driver. 
 
Issuing notice 
The operator must: 
  Record the driver’s details on the notice. 
  Identify the appropriate offence. 
  Check the infringement fee is correct for the charge. 
  Record the appropriate precedent code. 
November 2001 
 
35

  Record the unit details accurately on the notice. 
  Record a summary of the offence on the reverse of the 
notice. 
  Complete all parts of the notice. 
November 2001 
 
36

 
 
14.  Practical application - Laser 
 
 
 
Training 
The code of operations requires members to receive 20 hours’ 
practical training in the operation of speed enforcement 
equipment. This consists of both radar and laser training. The 
suggested breakdown of hours is 16 hours for radar and 4 hours 
for laser. The following provides details of what operators must 
be able to demonstrate before they can be assessed as competent 
users. 
 
 
Pre-deployment tests 
Certification 
The operator must: 
  Check the certification sticker on the side of the device for 
the expiry date. 
  Explain if the date is current the device can be used, 
otherwise the device must be recertified before use. 
  Identify who carries out recertification. 
 
 
 Unit 
testing 
The operator must: 
  Connect the unit to the power supply correctly. 
  Turn the device on and allow it to run its internal testing 
sequence. 
  Check all readings are displayed completely, that means no 
missing portions of letters or numbers. 
  Explain how to recheck and retest the device if the power 
supply or readout does not work by:  
  rechecking cables  
  checking connections  
  confirming the power source connection  
  turning the device off and restarting it 
  proceeding with the internal test sequence. 
 
 
Pre-deployment  
Pre-deployment refers to the beginning of each shift. 
 
Sight alignment test 
The operator must: 
  Select a pole or fixed post object. 
  Aim the sighting device at the object and gain a distance 
reading, this is the reading between the device and the fixed 
point. 
  Obtain a distance reading and advise the instructor of that 
reading. 
  Move the laser aim from the fixed point to the left away 
from the point, and check the distance reading ceases on 
movement from the aimed point. 
  Move the laser aim from the fixed point to the right away 
from the point, and check the distance reading ceases on 
movement from the aimed point 
November 2001 
 
37

  Move the laser aim from the fixed point above the point, 
and check the distance reading ceases on movement from 
the aimed point.  
  Move the laser aim from the fixed point below the point, 
and check the distance reading ceases on movement from 
the aimed point. 
  Record the test results in the unit logbook. 
 
 
Weekly testing 
The operator must provide instructions to the driver of a patrol 
vehicle to conduct the weekly drive-through test. The operator 
must: 
  Establish that the vehicle has a current certificate of 
accuracy. 
  Instruct the driver to drive towards the unit at a constant 
speed. 
  Instruct the driver to flash their headlights or advise using 
the radio when the check to commence.  
  Lock on the speed of the target patrol vehicle. 
  View the readout and ask the driver of the target patrol 
vehicle for their true speed. 
  Confirm the target patrol vehicle speed and the readout on 
the unit is within +/- 3 km/h. 
  Record the test results in the logbook. 
 
 
Target identification 
The operator must identify which vehicle is being detected 
when a vehicle comes into the beam. 
 
 
Tracking history 
The operator must establish a tracking history of a vehicle. This 
means: 
  Seeing the target vehicle and specifiying what it looks like, 
for example a red Toyota. 
  Viewing the readout on the unit and identifying to which 
vehicle it relates. 
  Hearing the change in audio that indicates an increase or 
decrease in speed.  Prolaser II and III do not give true audio 
tracking. 
 
Cosine effect 

The operator must establish the target vehicle (using tracking 
requirements). 
 
 
Speed checks 
The operator must gauge visually the speed of vehicles.  
  The instructor covers the speed readout and the operator 
estimates the speed. The instructor checks this against the 
readout. The difference between the two speeds needs to be 
within +/- 8 km/h. 
  The operator needs to achieve 10 consistent speed 
confirmations within +/- 8km/h. 
  The instructor repeats this exercise with the operator 
covering the readout and the audio tone turned down. The 
difference between the speeds needs to be within +/- 8 
km/h. 
  The operator needs to achieve 10 consistent speed 
confirmations within +/- 8km/h. 
November 2001 
 
38

 
Night 
  The instructor covers the speed readout and the operator 
estimates the speed. The instructor checks this against the 
readout. The difference between the two speeds needs to be 
within +/- 8 km/h. 
  The operator needs to achieves 10 consistent speed 
confirmations within +/- 8km/h.  
  The instructor repeats this exercise with the operator 
covering the readout and the audio tone turned down. The 
difference between the speeds needs to be within +/- 8 
km/h. 
  The operator achieves 10 consistent speed confirmations 
within +/- 8km/h. 
 
 
Site selection 
The operator must select a site for operation of the laser in 
stationary mode. Selection must include the following 
considerations. 
 
 Parking 
The operator must consider: 
  Legal parking for the patrol vehicle. 
  Location safety for the patrol vehicle, including the officer’s 
ability to open the patrol car door safely, exit the patrol car, 
approach the offending vehicle, and conduct an enforcement 
stop. 
  The range of laser operation is not within 250 metres of any 
change in speed limit. 
  Legal parking in which to stop vehicles. 
  Safe parking for offending vehicles, including the ability for 
the driver to safely exit their vehicle, and a safe approach 
for the officer. 
  Day-time and night-time operation issues. 
 
 
 Site 
The operating site must be straight for approximately 250 
metres. 
 
Unit set up 
Aim 
The operator must check the unit is:  
  aimed and set up to 
  detect vehicles  
  minimise the cosine angle, and  
  the range is adjusted so it is appropriate for the site. 
 
 
Issuing notice 
The operator must: 
  Record the driver’s details on the notice. 
  Identify the appropriate offence. 
  Check the infringement fee is correct for the charge. 
  Record the appropriate precedent code. 
  Record the unit’s details accurately on the notice. 
  Record the summary of the offence on the reverse of the 
notice. 
  Complete all parts of the notice 
November 2001 
 
39

 
 
15.  Answers for self-paced test – Radar 
 
 
 
1.   
What are the three units that comprise traffic radar? 
Transmitter, receiver and antenna. 
 

2.   
There are three things that can happen to a radar wave, what are they?  
A radar wave can be reflected, refracted or absorbed. 
 

3.   
How can you minimise the cosine effect when using radar? 
Aiming the radar beam so that the angle between the radar and the target vehicle 
will minimise the cosine effect. Any speed difference between true speed and the 
recorded speed will always be in the favour of the target vehicle. 
  

4.   
Who is permitted to use radar speed enforcement equipment? 
Only police members who have been certified as trained operators are permitted to 
use radar speed enforcement equipment. This requires the member to have 
completed this module, achieved a minimum score of 70% in the test, undertaken 20 
hours’ practical instruction with an approved instructor who will certify the 
member’s competence, and been issued a certificate from Traffic Operations 
Support Group (Office of Commissioner). 
 

5.   
What is the antenna component of traffic radar used for? 
The antenna is used to aim the microwave beam at the area being monitored. 
 

6.   
Does the width of the beam remain the same the further from the transmitter it is 
emitted? 
No, the further the beam extends from the radar the wider it becomes. 
 

7.   
What factors can affect the radar range? 
Weather conditions such as rain, mist and fog will affect the radar range. Local 
terrain such as hills, corners, fences and buildings will also have some effect. Road 
undulations will also reduce the range and cause fading to the return signal. 
 

8.   
How can an operator reduce the target range? 
The range control is used to reduce range. 
 

9.   
What affect does vehicle size and shape have on the strength of the reflected signal? 
The size and shape of the target vehicle’s surface will affect the information sent 
back to the radar unit. The bigger the target the better it will act to reflect the signal 
back to the radar unit. A target vehicle that is small and aerodynamically designed 
is a poor reflector, which means it will need to be closer to the unit to be picked up 
clearly. 
 

10.   
There are two major things that you need to consider when selecting a stationary 
operating site, what are they? 
Operation and safety are the two major considerations when selecting a site for 
stationary mode operation. 
 

November 2001 
 
40

11.   
Establishing tracking history for all radar speed checks requires three elements, what 
are they? 
  visual observation 
  audio confirmation 
  radar verification. 
 

12.   
Within each of the three elements required to establish tracking history there are a 
number of parts. Detail what these are for each tracking history element. 
  visual observation 
1.  identify the target vehicle and continue to monitor its travel 
2.  confirm the target is within the radar’s range 
3.  estimate the target’s speed 

  audio confirmation 
1.  listen for a clear doppler tone 
2.  check the doppler tone is consistent with the speed. 
3.  check the level of the signal heard is strong and not fluctuating in audio 

content 
  radar verification 
1.  check the initial reading is consistent with visual observation and the 
operator estimated speed 
2.  ensure a steady target reading 
3.  check the readings are consistent with both visual observation and audio 

tone 
4.  confirm ground speed readings by patrol speedometer 
 

13.   
What are the tuning forks used for? 
Tuning forks are used to simulate speed. Each fork is stamped with an operating 
band and speed and the fork will produce this when struck. It is then used to test 
that the unit is detecting the speed accurately. 
 

14.   
What is the doppler shift? 
The speed radar detects a movement between the transmitted and received signal. 
This change in frequency is known as the doppler shift. Simply, the radar unit 
determines the frequency difference between the signals transmitted from the radar 
unit and the signals reflected from the moving target vehicle. The change in the 
tone in the speaker is the doppler shift frequency. 
 

15.   
Why is a certified speedo required when operating traffic radar? 
As part of the accuracy testing of the unit the speed of the patrol vehicle is checked 
against the patrol speed detected by the radar unit. Before using the unit the match 
between the patrol speed and the speed detected by the unit must be within +/- 3 
km/h. This is used to confirm unit accuracy. 
 

16.   
What reasons are there for loss of ground speed? 
Ground speed may be lost because of rain, a wet road surface, a badly sighted 
antenna, or when the hold button is released without a clear road in front (the 
device becomes confused and no reading is shown). 
 
17.   
Is it a requirement to lock every speed reading when conducting an enforcement stop? 
While it is preferred that the target vehicle speed is locked on before an enforcement 
stop, this is not essential.  
 

November 2001 
 
41

 
 
16.  Answers for self-paced test – Laser 
 
 
 
 
1. 
What sort of beam does a laser use? 
A laser is a concentration of light energy into a high intensity beam.  
 
2. 
When selecting a site for operating a traffic laser what factors should be taken into 
consideration? 
The operator must consider: 
  the cosine angle 
  a clear line of sight 
  weather conditions 
  whether the operation is from inside the patrol vehicle 
  movement of unit 
  other factors, such as sweep effect, reflection influences and night 
operation. 
 
3. 
The traffic laser should not be used in certain weather conditions. Name these 
conditions. 
The traffic laser should not be operated in fog, snow and heavy rain. 
 

4. 
What happens to the range if the laser is used through the windscreen of a patrol 
vehicle? 
Range is reduced if used through the windscreen of a patrol vehicle. 
 

5. 
What effect does using the laser through the windscreen of a patrol vehicle have on 
the accuracy of the unit’s speed reading? 
Although range is reduced there is no effect on the accuracy of speed readings. 
 

6. 
Where on a target vehicle should the laser be aimed? 
The operator should aim the laser between the headlights at the number plate of the 
target vehicle. 
 

7. 
What effect do power lines have on laser units? 
Power lines have no effect on laser units. 
 

8. 
When operating a laser how can the cosine effect be minimised?  
The position of the traffic laser to the roadway creates an angle that reduces the 
speed reading of the target vehicle. While the angle cannot be eliminated entirely (to 
do so the operator would need to be in the middle of the road), it can be minimised 
by the operator reducing the angle to a minimum. 
 

9. 
What effect does operator movement have on the target vehicle’s speed reading? 
Operator movement cause the laser unit speed reading to disappear. The speed 
reading will return when the device is stabilised. 
 

November 2001 
 
42

10. 
When operating laser devices at night-time, what additional factors should operators 
consider? 
Night operation and headlights will reduce the range of the traffic laser. Headlights 
of newer cars may also interfere with the laser’s ability to detect the reflected laser 
pulse. To avoid this, the operator should aim between the vehicle’s headlights at the 
number plate area. 
 

11. 
Describe the effect that vehicle size and shape have when a traffic laser is operated. 
The larger the vehicle the easier it is to detect. Small, aerodynamically designed 
vehicles are harder to detect and will be closer to the laser before a reading is 
obtained.  
 

12. 
Which mode may the traffic laser be operated in? Stationary mode, moving mode or 
both? 
Laser is operated in stationary mode only. 
 

13. 
What elements are required to establish tracking history? 
Tracking history is established using: 
  visual estimation of speed 
  audio tone 
  comparison of the digital readout with the operator estimate of speed. 
 
 
 
November 2001 
 
43