

Old Mangere Numerical Capacity Review January 2016

REPORT CONTROL SHEET

PROJECT NAME:	Ford Bridge
TITLE:	Old Mangere Numerical Capacity Review
REPORT NUMBER:	

RECORD ISSUE

VERSION	DETAIL	PREPARED BY	DATE	CHECKED BY	DATE	APPROVED BY	DATE
Α	Final	s9(2)(a)	01/16				

DISTRIBUTION

Organisation	Contact	Copies

1	Executive Summary	. 1
2	Introduction	. 2
3	Inspection for Assessment	. 3
4	Assessment Methodology	. 4
5	Assessment Results	10
6	Potential Results from Load Testing	11
7	Conclusion	13
8	Recommendations	14

Appendix A - Calculations

Appendix B - Principal Inspection

Appendix C – Original Drawings

1 Executive Summary

The results of the analysis have shown that the structure can carry the day to day (~200 people daily) traffic but the factor of safety are not ideal. The most venerable members are the edge girders and the girders most likely to get loaded during a crowd event. Under day to day load the girders have a factor of safety of 1.24 and under a crowd event 1.08. Both these factors of safety are not desirable and further action needs to implements to ensure the safety usage of the structure.

The results have shown that a ductile failure is more likely to occur opposed to a sudden shear failure which gives reassurance that there will be warning signs and a notice period if the structure starts to fail. Due to the unknown and erratic nature of a crowd event this needs to be managed for the foreseeable future. The management can entail a number of scenarios such as:

- · Prevent access to the edge girders completely
- Have a lookout stationed on the bridge permanently to alert the authorities when a crowd is forming, so action can be taken to break up the gathering.
- Install a real time monitoring with stringent trigger levels to alert the authorities of a failure and have sufficient time to safely evacuate the structure.

The assessment has shown that the structure can accommodate 3kN/m2 (required minimum load) but this needs to be verified with a load test. This will give greater reassurance of the structure capacity and behaviours.

2 Introduction

2.1 Purpose of Report

The Old Mangere Bridge has been in a deteriorated condition for a number of years and has been restricted to pedestrian use since 1985. The bridge underwent some strengthening works in 2005-2011 to provide a capacity of 2.25KN/m2 and its condition has been subject to regular monitoring inspections by the AMA in its role as bridge consultant.

Due to a noticeable visual change in condition of Old Mangere bridge over the past number of years the management strategy for this structure is being reviewed. In December 2015 a full tactile principal inspection was carried out and has catalogued the main defects on the structure.

As at 19 January there is no numerical assessment/capacity based on the current condition factors and the current load carrying capacity is not reliably know (While a previous load assessment and strengthening works were carried out several years ago, the structure has recently deteriorated significantly)

The report will document the new numerical assessment being carried out.

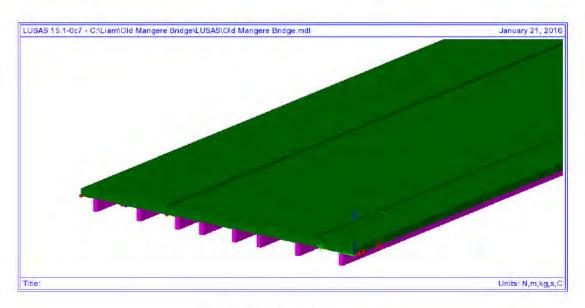
3 Inspection for Assessment

3.1 Principal Inspection

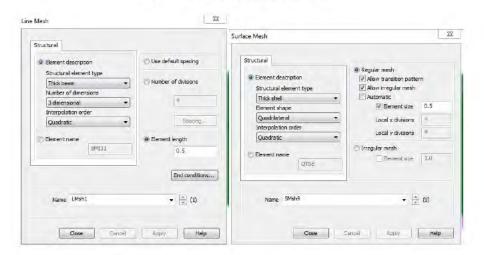
A Special Principal Inspection was carried out on the structure on the 17th December 2015. The structure was inspected from topside and from a boat for the underside. The inspection report documents all the defects observed during the site visit. Reference should be made to the inspection report for all the condition related issues. The Principal Inspection will be used as the basis for the numerical assessment.

4 Assessment Methodology

4.1 Modelling Assumptions

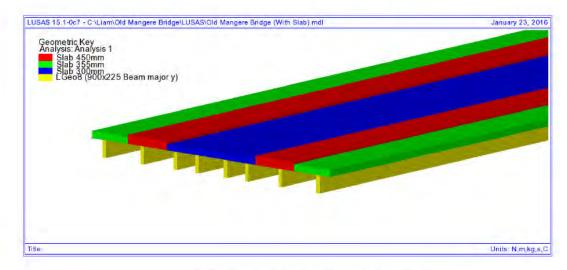

In order to take account of the severe conditional issues on the structure a number of conservative assumptions have been assumed:

- The main RC beams are 1.219mmx305mm. For the analysis it will be assumed that the beams are 900mmx225mm. Due to extensive loss of section noted during the inspection
- When working out the capacity of the main beams the depth of the section will include the original slab thus the section will be 1200x225 (900mm+300mm slab)
- When calculating the shear capacity of the main beams some shear capacity from the top slab will be included. It is assumed all the shear links in the beam section are 100% deteriorated and will not contribute towards the shear capacity
- · The beams have been modelled as simply supported.
- The retrofitted external post-tensioned (PT) system is being ignored initially. If the structure fails on this basis the PT system benefits will be evaluated.
- A weak young's Modulus (E) will be assumed with an E value of 14x10⁹N/m2 being adopted
- 40N concrete will be used for the 2005 strengthened concrete strips.
- A 50mm joint over the supports has been created in the shells representing the
 original slab joints. This ensures there is not continuous action in the original slab. This
 is a conservative assumption.
- The retrofitted 2005 RC slabs have been modelled as continuous over the supports
- Only 4 spans have been modelled as representative for the entire structure. To model all 17 spans would be excessive and time consuming.
- 380mm displacement/settlement based on the cloud survey will be applied to the structure.

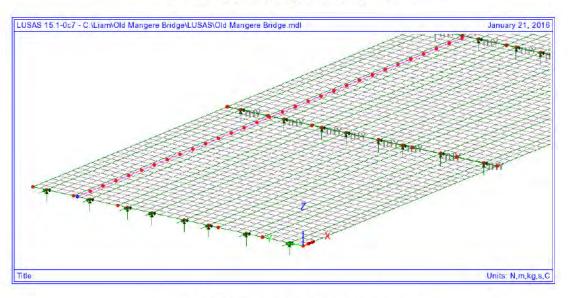


4.2 Structural Modelling and Verification

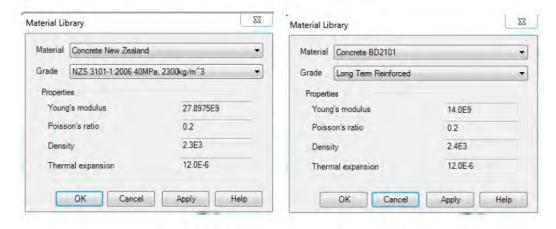
The assessment of Old Mangere was carried out using LUSAS Bridge Pro Version 15.1. Two models were created. The first modelled the structure before the 2005 RC slab and the second model will look at the behavior of the structure after the 2005 slab. A fleshed out view of the 2005 slab model is illustrated in tile 1 below. The main original top slab and the strengthened 2005 Reinforced Concrete (RC) slab were modelled as 3D thick quadratic shell elements. The RC beams underneath were modelled ad 3D thick beam line elements.

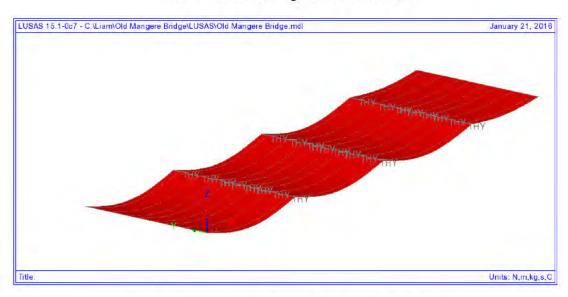


Tile 1 - LUSAS Model "Fleshed"

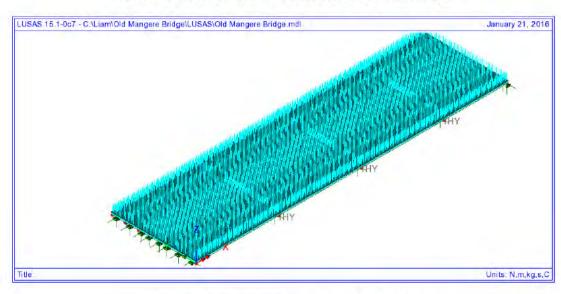


Tile 2 - View showing the mesh properties

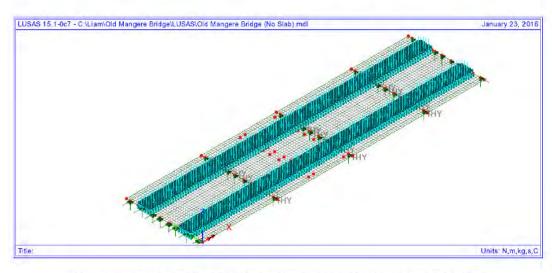

Tile 3 – View showing Geometric Properties


Tile 4 – View showing Support Conditions.

In order to ensure that the main RC beams act as simply supports end releases were introduced.



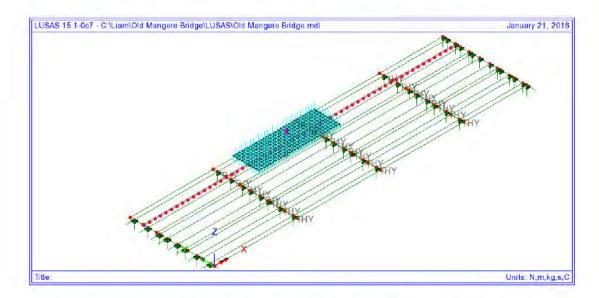
Tile 5 – View showing Material Proterties


Tile 5 - View showing deformed mesh under Self Weight

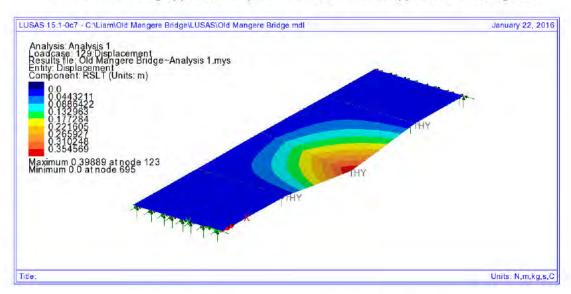
Tile 5 - View showing application of self weight

швеса

Tile 5 - View showing application of wet concrete from 2005 RC slabs



Tile 5 – View showing application of Parapet loads


For the application of live loading 2no. scenarios will be looked at:

- 1. 3kN/m2 applied as a UDL across the entire deck.
- 2. 3kN/m2 applied as a 15mx5m patch along the edge of the structure. This load is envisioned to represent a crowd gathering at the edge to observe something in the water. This patch load will be moved across the structure as a moving load at 1 m intervals to see how the loading is redistributed around the structure.

Tile 5 – View showing application of patch live load. It will be applied as a moving load.

Tile 5 – View showing application of 380mm settlement

5 Assessment Results

The results for the main beams are displayed in the table below. The most critical beams are the edge girders (MGE1) with a factor of safety of 1.1 in bending and 1.08 in shear. If the crowd loading is removed the factor of safety increase to 1.24 for bending and 2.67 for shear. When calculating the capacity no factors of safety were applied to the loads or the materials so the factors below are a pure global factors.

The loads from the settlement/displacement of the structure has been ignored as they were giving relieving effects.

The capacity of the sections are based on the British Standard BD44/95 the assessment of concrete structures. The loads applied were in accordance with NZTA Bridges Manual. As can be seen in the table below that a 1.1 gamma factor has been applied to take account of modelling discrepancies and additional self-weight such as concrete repairs and plating etc.

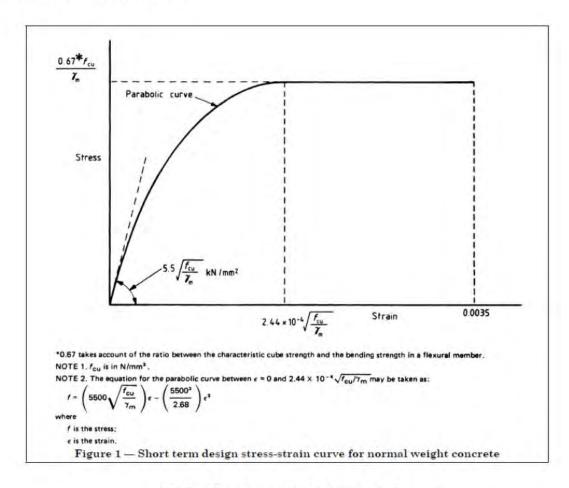
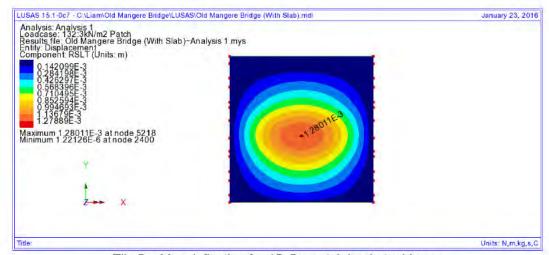

	(BCM) re	ference			R,2	S _p *	Sp-Wel Gorna		Sparavelt	Source	Sararabai	RF = - R _A *	
Major	Element	Minor	Element		***	-9	"B-Wet Cons	Spelapoverent	-Parapet	-10ture-	- GAPS-Pable	S _{zm} *	
Code	No.	Code	No.	Load Effect	Assessment, Resistance	Dead Load Effects	SDL (Wet Conc)	Displacement	Parapet SW	3kPa Pedestrian	3kPa Patch (LC88)	Structure Reserve Factor	Structure Reserve Factors with addition 1.1 factored applied
DK	6	MGE	1	Bending moment (Original)	363	-209.78	-49.11	18.94	-6.58	-20.54	-31.64	1.22	1,11
DK	6	MGE	1	Shear force (Original)	197	-55.48	-6.87	2.30	-4.60	-99.64	-63.14	1.18	1.08
1			- 100										
DK	6	MGI	9.11	Bending moment (Original)	363	-174 30	-48.03	3.78	-3 25			1 62	1.48
DK	6	MGI	1	Shear force (Original)	197	-94.62	-35.20	48.80	-38.13			1.17	1.07
DK	6	MGI	1:	Bending moment (RC Slab)	138	1				-32,04	-36.92	3.74	3.40
DK	6	MGI	4	Shear force (RC Slab)	330			A 100 M	-	-102.50	-44.81	3.22	2.93
10.77		0-0.8	100		2000	- 10	AT 79	190				100	
DK	6	MGI	2	Bending moment (Original)	363	-167.98	_42.78	1.85	-1.17	-22.76	-13.47	1.55	1.41
DK	- 6	MGI	2	Shear force (Original)	197	-83.87	-22.70	29.13	0.00	-5.10	-8.28	1.72	1.58
517		110		#		100.00	20.75	4.00			1700	1.60	1.45
DK DK	0	MGI	3	Bending moment (Original) Shear force (Original)	363 197	-165 27 -78.78	-39.75 -13.80	0.99	-0.57 0.00	-20.93 -15.13	-17.68 -13.90	1.83	1.48
DK.		MGI	3	Shear force (Original)	197	-/8./8	-13.80	411.00	0.00	-15.13	-13.90	1.83	1,00
		Ť											
Notes:													
				en ignored as it generally was i									
				ed to the loads or materials so t	the values above a	re total factors	3						
A 1.10	Gamma fü	factor :	should be	e considered for unknowns									

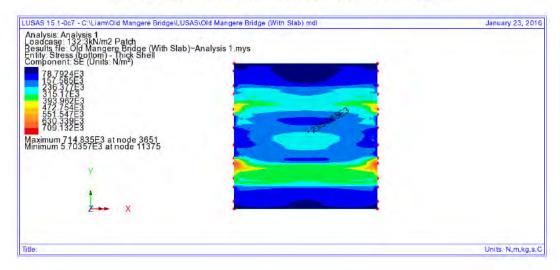
Table 1 - Results table for main beams

6 Potential Results from Load Testing

This section will include a number of screen shots of the structure to illustrate what type of loading and deflections can be expected during a possible load test. The values will be shown in Von Mises Stress contours. Based on a typical stress strain curve the maximum compressive strength for a 14N cubic concrete would be 7.8N/mm2, tensile stress should generally be limited to 2 N/mm2.


Tile 5 – View showing typical stress/strain curve

One possible load test would be to apply a 3kN/m2 patch load around the structure to represent a crowd load. In the model a 15m x 5m patch load was used. If the patch load is applied at mid span deflections of approximately 1.2mm would be expected. The maximum tensile stress on the bottom of the slab would be 0.2N/mm2 on the original structure and stress close to 0.7N/mm2 would be generated in the new RC slab. These values would be within allows strain/strain limits.


The modelling has shown that the 2005 RC slab attracts a large portion of the live loads and any subsequent loading since 2005. This is to be expected as the new RC slabs act as spines

along the bridge stiffening it up and will naturally attract more load. As the structure deteriorates these slabs will play a more significant role in the capacity.

Tile 5 – Max deflection for 15x5m patch load at mid span

Tile 5 – View showing the stress under a 15x5m patch load at mid span

7 Conclusion

The results from the analysis of the deck have shown that the edge girders are the most venerable with a factor of safety of 1.08 in shear and 1.1 in bending. If the crowd load is removed from the structure these factors go to 2.67 for shear and 1.24 for bending.

The next most venerable beam is intermediate girder 2 (MGI2) with a bending capacity of 1.41 for bending and 1.56 in shear. If the crowd loading is removed these factors of safety increase to 1.56 for bending and 1.68 for shear.

The results have shown that the 2005 retrofitted RC slabs give significant capacity and attract a large portion of the load. The two slabs act as spines and it is to be expected that they will attach live load as it is applied. The slabs are key structural members that are vital to the capacity of the structure for loading applied after 2005. The results have shown that the slabs have a factor of safety of 2.93 which is deem sufficient.

In an ideal scenario factors of safety of 1.5 and above would be achieved to have some reassurance in the capacity. As the results have shown the edge girders do not achieve this in a crowd event. When the crowd loading is removed from the edge girders the factor of safety for bending only achieves 1.24 but shear increases to 2.67. This gives some reassurance that a sudden failure is unlikely for the structure under its own self weight and any failure will be ductile and progressive in nature.

The structure will inherently have more capacity than the results shown as conservative assumptions have been made to achieve these results. This inherent strength cannot be verified due to the significant deterioration of the structure, but equally will give some reassurance that there is capacity above the values shown. The capacities shown are for the structure at this point in time. As the structure deteriorates and is still subjected to load this will effect and reduce the structural behaviour of the bridge. This needs to be considers in the recommendations and strategy going forward.

8 Recommendations

The following recommendations need to be implemented going forward to ensure the safe usage of the bridge.

- The structure needs to be load tested to verify the results of this assessment. This will
 give further reassurance that the structure can carry the specified loading. The
 modelling has shown that the structure should be able to support a Universal Dead
 Load of 3kN/m2.
- The results have shown that the edge girders can supports a 3kN/m2 load but the factors of safety are not ideal and are below 1.2. Due to the deterioration of the structure and the potential for unknowns this is not deemed a safe factor of safety. The day to day load of people fishing is not a concern as it will have little to no impact on the capacity. The numbers have shown that sudden failure is unlikely under self-weight and any failure will be ductile.
- Measures need to installed that prevent crowd loading on the edge girder, or a method
 to safely monitor a potential failure with sufficient notice period to alert the authorities
 and evacuate the structure. This could be achieved with a real time monitoring system
 with stringent trigger levels and a robust contingency/management strategy when the
 alarms are triggered.
- The results of the analysis have shown that the centre of the deck has sufficient capacity and factors of safety. The reality is any failure in this area will be redistributed around the deck. Any potential failure will be in bending which will be ductile in behaviour and not sudden. But due to the ongoing deterioration of the structure this area should also have real time monitoring installed to ensure the future deterioration can be tracked and measures implement to ensure the safe usage of the structure
- The structure is to remain on 3 monthly tactile inspection from both top and under side. The deterioration is to be monitored and recorded in inspection reports. If the deterioration of the structure accelerates the frequency of the inspection is to be reviewed.

APPENDIX A – Calculations

Maiar	(BCMI re				R _A *	S _D *	S _{D Wet Conc} *	S _{D Displacement*}	S _{Parapet*}	S _{3kPa*}	S _{3kPa Patch*}	$RF = \frac{R_A^*}{S_{All}^*}$]
Code	No.	Code	No.	Load Effect	Assessment. Resistance	Dead Load Effects	SDL (Wet Conc)	Displacement	Parapet SW	3kPa Pedestrian	3kPa Patch (LC88)	Structure Reserve Factor	Structure Reserve Factors with addition 1.1 factored applied
DK	6	MGE	1	Bending moment (Original)	363	-209.78	-49.11	18.94	-6.58	-20.54	-31.64	1.22	1.11
DK	6	MGE	1	Shear force (Original)*	197	-55.48	-6.87	2.30	-4.60	-99.64	-63.14	1.18	1.08
DK	6	MGI	1	Bending moment (Original)	363	-174.30	-46.03	3.78	-3.25			1.62	1.48
DK	6	MGI	1	Shear force (Original)*	197	-94.62	-35.20	48.80	-38.13			1.17	1.07
DK	6	MGI	1	Bending moment (RC Slab)	138					-32.04	-36.92	3.74	3.40
DK	6	MGI	1	Shear force (RC Slab)	330					-102.50	-44.81	3.22	2.93
DK	6	MGI	2	Bending moment (Original)	363	-167.98	-42.78	1.85	-1.17	-22.76	-13.47	1.55	1.41
DK	6	MGI	2	Shear force (Original)*	197	-83.87	-22.70	29.13	0.00	-5.10	-8.28	1.72	1.56
DK	6	MGI	3	Bending moment (Original)	363	-165.27	-39.75	0.99	-0.57	-20.93	-17.68	1.60	1.46
DK	6	MGI	3	Shear force (Original)*	197	-78.78	-13.80	11.60	0.00	-15.13	-13.90	1.83	1.66

Notes:

* Shear capacity from original slab included
Displacement/settlement has been ignored as it generaly was giving relieving effects
No factors of safety were applied to the loads or materials so the values above are total factors
A 1.1 Gamma f3 factor should be considered for unknowns

Project	Old Mangere			ginal Slab		Job ref	
Office of Issue	Telephone No Division	S9(2)(BECA	23/01/2016	Calc Sh	of
Code ref	Calculations					emarks/ output	Checked by Inits & date
BD44/95							
cl. 5.3.2	Moment of Resistance of a Singly	/-Reinforced S	lab to BD44/95		7		
	<u>Inputs</u>						
	Width of slab	b	1500 mm				
	Total depth of beam	D	300 mm				
	Cover to tension bars	C	30 mm	(Assumed)			
	Reinforcement diameter	Ø	10 mm	(Assumed)			
	Reinforcement spacing	S	300 mm	(Assumed)	<u> </u>		
	Steel yield stress	fy	210 N/mm ²				
	Concrete cube strength	f _{cu}	14 N/mm ²				
	Partial safety factor for concrete Partial safety factor for steel	γmc γms	1				
	i.e. a 300mm deep slab with 10mm ba	rs at 300mm spa	eing and 30mm cove	26.	11		
	Calculation						
	Effective depth	d = D c (\$					
		300 30					
		- 265	(DC)				
	Number of bars	n -b/s					
		-1500 / 3	00				
	1 []	= 5.000	1				
					111		
	Area of reinforcement	As = n x Tt x (6					
		=5 x n x (1					
		- 302.7	- mm		-		
Equation 5	10001 3cm, 2 (1 (0.84 x (f. /	a 1× Ac) ///f /	g (xbxd))xd				
edianona			14 / 1) × 1500 × 255)	1 v 265			
	72.72,000,072	= 261.7		A-1-m-so-			
	J)-				- 1		
	Butn	ot greater than (0.95d				
		= 251.75	nn				
	Therefore,	2 251.8	nm				
			200.04				
5.3.7.3	Mement of resistance is given by the lo	wer of equations	s 1 and 2s				
Equation 1		M - (F/B)	v A .v z				
Ednarioux			× 307 7 × 751 75 / 1	DVE			
	i i	- 20.76			196		
Equation 2		M_ = (0.225 x	feu / Sme) x b x d ²				
	[]	-(0.225 x	14/1)×1500×265	12/10/15			
		= 331.81	kNm				
					j.j. ı		
	Therefore, the ultimate moment of re	sistance of the s	ection is	20.75	kNm		
							1

Project	Old Mangere	Part of struct	ure/scheme and s	_{tatus} Driginal Slab		Job re	ı
Office of Issue	Telephone No Division	Calculations		cked by	Date	Calc S	Sheet no
AMA		s9(2)(a		BECA	23/01/20	1 1 1 1 1 1 1	of
Code ref	Calculations					Remarks/ output	Checked b
BD44/95							
cl. 5.3.3	Shear Resistance of a Slab to B	D44/95			Ý		
	Inputs						
	Width of beam	b	1500 mm		ding calcs)	4.	
	Effective depth of section	d	265 mm		ding calcs)		
	Area of bending reinforcement	As	392.7 mm		ding calcs)		
	Concrete cube strength	f _{cu}	14 N/n	nm ² (from bene	ding calcs)		
	Partial safety factor for concrete	Ymc	1				
	Partial safety factor for steel	Yms	1				
	Distance from support	a _v	300 mm				
	Tension reinforcement anchored?		N		enhancement)		
	Calculation						
5.3.3.2	In no case should v exceed 0.92 v	(fcu / γ_{mc}) or 7 / $$	γ _{mc} N/mm ² , wh	ichever is less	er.		
	$0.92 \sqrt{\text{(fcu / } \gamma_{mc})} = 0.92 \times (14 / \text{)}$	1) ^ 0.5 =	3.44 N/n	nm ²			
	$7/\sqrt{\gamma_{\text{mc}}} = 7/(1) ^0.5$		7 N/n	nm²			
	Therefore, limit on v	v _{lim} = 3.44	N/mm ²				
Table 9	Depth factor	$\xi_s = (500 / d)^{0.2}$ = $(500 / 265)$		dified by IAN 4	/96)		
		= 1.172	, 5.25				
	Donth factor cannot be less than (1.7					
	Depth factor cannot be less than 0 Therefore,	$\xi_{\rm s} = 1.172$	4				
Table 8	Ultimate shear stress in concrete, v_c	0.24 (100 A	(f)				
		$\gamma_{mv} b_{w}d$) (Jeu) _				
	wh	ere $\gamma_{mv} = 1.25$, f_{ct}	, is not greater	than 40 and			
		$-\left(\frac{100A_s}{b_w d}\right)$	should not be or greater tha	taken less than n 3.0.	1 0.15		
	$-\left(\frac{100A_s}{}\right)$	//doc 000	71/4500	05)) 0.00			
	$b_{w}d$		2.7) / (1500 x 2 3.0, therefore		<u> </u>		
	Therefore,						
	Therefore, ξ _s :	x v _c = 1.172 x 0.					10
		= 0.288	N/mm ²		-	<i>i</i>	
-					-		1

Project			Part of structure/scheme	and status			Job ref	
14.24	Old Manger	e		Original	Slab			
Office of Issue	Telephone No	Division	Calculations by	Checked by		ate	Calc Sh	eet no
AMA			s9(2)(a)	BEC		23/01/20		of
Code ref	Calculations						Remarks/ output	Checked by Inits & date
cl. 5.3.3.3	Section close en	lough to support for er	nhanced shear strength	1?	Yes			
		$3d/a_v = \xi_s v_c \times 3$	$8d/a_v = 0.28$	265 / 300 = 88 x 2.65 = ted to v _{lim =}	2.65 0.763 N 3.44 N			
	Therefore the sh	ear strength $\xi_s v_c$ of th	e concrete =		0.288 N	l/mm²		
	The ultimate she	ear resistance of the se	ection is given by $V_u = \xi_s v_c t$	o _w d				
		$\xi_s v_c x b_w x d =$	0.288 x 1500 x 265	=	114.5 k	N		
	Therefore the s	hear capacity of the	section is =		114.5 k	N		
								-
								1
								- 1

Project			Part of structure/	scheme and status			Job ref	
	Old Mangere			New 9				
Office of Issue	Telephone No	Division	S9(2)(a)	Checked by BEC		23/01/2016	Calc Sh	of
Code ref	Calculations					The second secon	marks/ utput	Checked b
BD44/95						1		
cl. 5.3.2	Moment of Resis	stance of a Singly	-Reinforced Slab	to BD44/95				
	Inputs							
	Width of slab		b	2500 mm		-		
	Total depth of bea	am	D	225 mm				
	Cover to tension I	oars	C	40 mm				
	Reinforcement dia	A STATE OF THE STA	Ø	25 mm				
	Reinforcement sp		S	400 mm				
	Steel yield stress		fy	275 N/mm ² 40 N/mm ²				
	Concrete cube str Partial safety fact		f _{cu}	40 N/mm²				
	Partial safety fact		Ymc Yms	1				
	i.e. a 225mm dee	p slab with 25mm	m bars at 400mm s	spacing and 40mn	n cover.			
	Calculation							
	Effective depth							
	= 225 - 40 - (25 / 2) = 172.5 mm							
	Number of bars, $n = b/s$							
	= 2500 / 400							
	= 6.250							
		- 0.250						
	Area of reinforcer	nent	$A_s = n \times \pi \times (\emptyset /$					
			$= 6.25 \times \pi \times ($	Property Village				
			= 3068.0 mn	1-				
Equation 5	Lever arm, z		/ γ _{ms}) x As) / ((f _{cu} / 75 / 1) x 3068) / ((4	0 / 1) x 2500 x 172	.5)) x 172.	5		
			= 165.4 mn	1				
		But r	not greater than 0.9					
	TLESCAS		= 163.875 mn					
	Therefore,		z = 163.9 mn	1				
5.3.2.3	Moment of resista	ance is given by the	e lower of equation	s 1 and 2:				
Equation 1			$M_u = (f_y / \gamma_{ms}) \times A$					
				3068 x 163.875 / 10	0^6	I I		
			= 138.26 kN	m		1 7		
Equation 2	4		$M_{u} = (0.225 \text{ x f}_{cu})$	/w \ v h v d ²				
Equation 2	52			/ γ _{mc}) x b x d - / 1) x 2500 x 172.5	\$ ^ 2 / 10^G			
			= 669.52 kN		2/100			
	Therefore, the u	Itimate moment of	of resistance of the	e section is	138.26 k	Nm		
								L

Project	Old Marrane	Part of structure/schem		OLL		Job ref	
	Old Mangere			Slab	140		
Office of Issue	Telephone No Division	S9(2)(a)	Checked by		Date 23/01/201	Galc St	of
Code ref	Calculations					Remarks/ output	Checked b
BD44/95							
cl. 5.3.3	Shear Resistance of a Slab to B	D44/95					
	Inputs						
	Width of beam	b 250	0 mm	(from bendin	ng calcs)		
	Effective depth of section		The state of the s	(from bendin			
	Area of bending reinforcement		4-37-28-37-2	(from bendin			
	Concrete cube strength		0 N/mm ²	(from bending	ng calcs)		_
	Partial safety factor for concrete Partial safety factor for steel	Yms	1		-		1
	Partial Salety factor for steel	Ţms	1,1				
	Distance from support	a _v 30	0 mm				
	Tension reinforcement anchored?	Y/N	N	(for shear er	nhancement)		
	Calculation						
5.3.3.2	In no case should v exceed 0.92 v	(fcu / γ _{mc}) or 7 / √γ _{mc} N/mi	m², whicheve	er is lesser			
	$0.92 \sqrt{\text{(fcu / } \gamma_{mc)}} = 0.92 \times (40 / \text{)}$	1) ^ 0.5 = 5.8	2 N/mm ²				
	$7/\sqrt{\gamma_{mc}} = 7/(1)^{0.5}$		7 N/mm ²				
	Therefore, limit on v	v _{lim} = 5.82 N/mm ²					
Table 9	Depth factor	$\xi_s = (500 / d)^{0.25}$ = (500 / 172.5) ^ 0.2	(modified	by IAN 4/9	96)		
		= 1.305					
	Depth factor cannot be less than 0	17					
	Therefore,	$\xi_{\rm s} = 1.305$					
Table 8	Ultimate shear stress in concrete,	X					
	Ultimate shear stress in concrete,	$= \frac{0.24}{\gamma_{mv}} \left(\frac{100 A_s}{b_w d} \right) (f_c$	w) ¹ / ₄				
	wh	ere $\gamma_{mv} = 1.25$, f_{cu} is not g	reater than 4	10 and			
		$(100A_s)$ should r	not be taken	less than	0.15		
		$-\left(\frac{100A_s}{b_w d}\right) \qquad \text{should r} \\ \text{or great}$	er than 3.0.				
	$\left(\frac{100A_s}{b_sd}\right)$	= ((100 x 3068) / (2500) x 172.5)) =	0.711	1 1		
	(D _w a)	> 0.15, < 3.0, the	erefore, use	0.711			
	Therefore,	$v_c = (0.24 / 1.25) \times 0.71$ = 0.586 N/mm ²	11 ^ (1/3) x 4	0 ^ (1/3)			
	Therefore						
	Therefore, ξ _s :	$x v_c = 1.305 \times 0.586$ = 0.765 N/mm ²					
	0 J +						

Project	Old Mangere		Part of structure/scheme	New Slab		Job ref					
Office of Issue	Telephone No	Division	Calculations by \$9(2)(a)	Checked by BECA	Date 23/01/2016	Calc Sh	eet no of				
Code ref	Calculations					emarks/ output	Checked by Inits & date				
cl. 5.3.3.3	Section close eno	ough to support for er	nhanced shear strength	n? Yes	3						
		$ 3d/a_v = 3 \times 172.5 / 300 = 1.725 $									
	Therefore the she	5 N/mm ²									
	The ultimate shea	1									
		$\xi_s v_c x b_w x d =$	0.765 x 2500 x 172	.5 = 329.9	9 kN						
	Therefore the sh	ear capacity of the	section is =	329.9) kN						
					1 9						

Project	Old Mangere Bri	idge		N	lain Girders				
Office of Issue	Telephone No	Division	Calculations b \$9(2)(a		ked by BECA	Date 23/01/2	/01/2016		of
Code ref	Calculations							narks/ tput	Checked by Inits & date
BD44/95									
cl. 5.3.2	Moment of Resis	stance of a Single	y-Reinforced Bea	am to BD44/9	<u>5</u>				
	<u>Inputs</u>								
	Width of beam		b	225 mm			0		
	Total depth of bea	am	D	1200 mm	(Includes top slab)			
	Cover to tension bars c 0 mm (including shear link diameter)								
	Reinforcement diameter Ø 20 mm (Originally bars were 32mm)								
	Number of bars n 5 (Assume 1 bars complete lost)								
	Steel yield stress		fy	210 N/m	m ²		2==		
	Concrete cube str		f _{cu}	14 N/m	m ²		71		
	Partial safety fact		Ymc	1			i i	- 4	
	Partial safety factor for steel γ _{ms} 1								
	i.e. a 1200mm deep x 225mm wide beam with 5No 20mm bars at 0mm cover.								
	Calculation								
	Effective depth		d = D - c - (2						
			= 1200 - 0	- (20 / 2)				- 4	
	= 1190 mm								
	Area of rainforcement								
	Area of reinforcement $A_s = n \times \pi \times (\emptyset/2)^2$								
	$= 5 \times \pi \times (20/2)^2$								
	= 1570.8 mm ²							5	
Equation 5	Lever arm, z = $(1 - (0.84 \text{ x } (f_y / \gamma_{ms}) \text{ x As}) / ((f_{cu} / \gamma_{mc}) \text{ x b x d})) \text{ x d}$								
	= (1- (0.84 x (210 / 1) x 1570.8) / ((14 / 1) x 225 x 1190)) x 1190								
	= 1102.0 mm								
	20.100.000.000.000.000								
	But not greater than 0.95d							-	
	= 1130.5 mm								
	Therefore, z = 1102.0 mm								
5.3.2.3	Moment of resista	ance is given by th	e lower of equation	ons 1 and 2:					
Equation 1			$M_u = (f_y / \gamma_{ms})$	x A _s x z				- 15	
				x 1570.8 x 110	02/10^6				
			= 363.51 H						
Equation 2	$M_{u} = (0.225 \times f_{cu} / \gamma_{mc}) \times b \times d^{2}$								
				14 / 1) x 225 x		6			
			= 1003.66 H		21.10				
	Therefore, the u	Itimate moment	of resistance of	the section is	363.5	1 kNm			
	1								
	G .						4	- 4	
	-								

Project	Old Mangere Bridge	9	Part of stru	cture/scheme and statu		Job ref			
Office of Issue		Division	Calculations		and a deal soul	Date	Calc S		eet no
AMA				s9(2)(a) BECA			016	133.77	of
Code ref	Calculations							marks/ utput	Checked by Inits & date
BD44/95									
cl. 5.3.3	Shear Resistance of								
	<u>Inputs</u>								
	Width of beam	b	225 mm		ding calcs))			
	Effective depth of sec		d	1190 mm		ding calcs)			
	Area of bending reinf	orcement	As	1570.8 mm ²	(from ben	ding calcs)			
	Shear link diameter Number of legs of links Shear link spacing		Ø	0 mm					
			n	0					
			Sv	0 mm	0		2		
	Shear reinforcement		f _{yv}	210 N/mm		ALC CARRIES			
	Concrete cube streng		f _{cu}	14 N/mm	from ben	ding calcs)			
	Partial safety factor for		γmc	1				_	
	Partial safety factor for	or steer	Ϋ́ms						
	Applied shear force		٧	181.9 kN			1		
	Coexistent Moment		M	0 kNm					
	Distance from support Tension reinforcement		a _v	1520 mm Y	/for about	enhancement)	-	_	
	Tension reimorcemen	it anchored?	1/N	- 1	(for shear	erinancementy			
	Calculation								
	Shear stress in section $v = V / (b \times d)$								
	= 181.9 / (225 x 1190) x 1000								
	= 0.679 N/mm ²								
5.3.3.2	In no case should v exceed 0.92 $\sqrt{\text{(fcu / }\gamma_{mc})}$ or 7 / $\sqrt{\gamma_{mc}}$ N/mm ² , whichever is lesser.								
	$0.92 \sqrt{\text{(fcu / } \gamma_{mc})} = 0.92 \times (14 / 1) ^ 0.5 = 3.44 \text{ N/mm}^2$								
	$\frac{0.92 \text{ V(IGU/}\gamma_{mc})}{7 / \sqrt{\gamma_{mc}}} = \frac{0.92 \text{ X} (1471) ^{\circ} 0.5}{0.5} = \frac{3.44 \text{ N/mm}^2}{7 / \sqrt{\gamma_{mc}}}$								
	7 14/11/11								
	Therefore, limit on v V _{IIm} = 3.44 N/mm ²								
	0.679N/mm2 < 3.44N/mm2 therefore shear stress does not exceed vlim.								
Table 9	Don't foctor 5 - (500 / 5025 / 185 - 185 1/00)								
Table 9	Depth factor								
	= (500 / 1190) ^ 0.25 = 0.805								
	Depth factor cannot be less than 0.7 Therefore, $\xi_s = 0.805$								
Table 8									
, abio o	Similar Silvar Silvar	V _c =	0.24 100	$\frac{A_s}{f}$				-	
	Ultimate shear stress in concrete, $\frac{\mathbf{v_c} = \frac{0.24}{\gamma_{mv}} \left(\frac{100 A_s}{b_w d}\right)^{\frac{1}{3}} (f_{cu})^{\frac{1}{3}}$								
	where $\gamma_{mv} = 1.25$, f_{cu} is not greater than 40 and								
	$\left(\frac{100A_s}{b_w d}\right)^{\frac{1}{3}} = \frac{1000A_s}{\text{should not be taken less than 0.15}}$ or greater than 3.0.								
	14		$b_{w}d$	or greater than 3	.0.				
	(100A)	<i>Y</i> ₃		225 x 1190)) ^ (1/3					
	$\frac{b d}{b d}$	= ((100	x 1570.8) / (225 x 1190)) ^ (1/3	3) = 0.83				
	(Swar)		> 0.15,	< 3.0, therefore, u	ise 0.8	37			

Project	Old Mangere Br	ridae	Part of structure/schem	e and status Main Girders		Job ref	
Office of Issue	Telephone No	Division	Calculations by	Checked by	Date	Calc Sh	eet no
AMA			s9(2)(a)	BECA	23/01/20	16	of
Code ref	Calculations					Remarks/ output	Checked by Inits & date
	Therefore,		v _c = (0.24 / 1.25) x 0.83	37 x (14) ^ (1/3)			
			= 0.387 N/mm ²				
	Therefore,	ξ _s x	$v_c = 0.805 \times 0.387$ = 0.312 N/mm ²				
cl. 5.3.3.3	Section close en	ough to support for	r enhanced shear streng	th? Ye	es		
	3d/a _v = ξ _s v _c x 3						
	Therefore the sh						
	The ultimate she						
	$\xi_s v_c x b_w x d =$						
	Therefore, (f _y /γ _m						
cl. 5.3.3.2	For the links to b		sile capacity of the longi where z = 0.9d	tudinal reinforcemen	t must		
	Tensile capacity						
	Therefore tensile						
	Also, for the links						
	This sheet only v	alid if the links are	vertical, i.e α = 90°				
	A _{sv} (sin α + cos α						
	0.2b _w s _v =						
	Therefore the sh						
	Therefore the sh						
	83.5kN < 181.9k						
	\$						

TRANSPORT AU	Project Old Mangere Br chland Meterweys Part of Structure Slice Result	ridge		Job ref. Sheet No.
	Slice Result Drawing ref.	s9(2)(a)	Date Jan-16	Check by Date
ef		Calculation	Jan-16	Output
	SLICE	RESULTS FROM LUS	AS	
		THEODE TO THOM EGO!		

		Project Old Mangere	Bridge					Job ref.	
ACENCY	Auckland Motorways	Part of Structure Slice Result						Sheet No.	
		Drawing ref.						Check by Da	te
			Ca	alculation		Jan		Output	
				MGE	1				
Title	SW Dist X	Y	7	Dv	Shear	Axial M Pz	ain Bending Mx	Snd Bending	We
Title ce 1 (-Z)	0.5 22.548	5.6	Z -0.2225	Px	Py -5.55E+04	5.08E+05	-2.10E+05	My -14.2062	Mz 0.476052
Title	Wet Concrete Dist X	Y	Z	Px	Shear	Axial M	ain Bending Mx	Snd Bending My	Mz
e 1 (-Z)	0.5 22,548		-0.1275	FA.	-6.87E+03	1,33E+05	-4.91E+04	29.4436	6.87E-03
Title	Displacement X	Y	Z	Px	Shear	Axial M	ain Bending Mx	Snd Bending My	Mz
e 1 (-Z)	0.5 22,548	14.472	-0.1275		2.30E+03	-2.76E+05	1.89E+04	-85.4988	-4.58E+04
Title	Parapet Self Weigh Dist X	Y	Z	Px	Shear	Axial M	ain Bending Mx	Snd Bending My	Mz
e 1 (-Z)	0.5 22.548		-0.1275	4.7	-4.60E+03	1.85E+04	-6.58E+03	-20.0727	-0.121373
Title	3kPa Pedestrian UI	Υ	Z	Px	Shear	Axial M	ain Bending Mx	Snd Bending My	Mz
e 1 (-Z)	0.5 22.548	14.472	0.0545563		-9.96E+04	4.37E+04	-2.05E+04	6.5983	36.2965
Title	3kPa Patch Dist X	Y	Z	Px	Shear	Axial M Pz	Mx	Snd Bending My	Mz
e 1 (-Z)	0.5 22.548	14.472	0.0545563	-272	-6.31E+04	7.12E+04	-3.16E+04	-41.9397	-4.49133
	CIVI			MGI		Autol	nia Dandina	Cod Donding	
Title	Dist X	Y	Z	Px	Shear Py	Pz	ain Bending Mx	Snd Bending My	Mz
e 1 (-Z)	0.5 22.548 Wet Concrete	12.034	-0.25		-9.46E+04 Shear	4.87E+05	-1.74E+05	-12.0339 Snd Bending	0.844818
Title	Dist X	Y	Z	Px	Py	Pz	Mx	My My	Mz
ce 1 (-Z)	0.5 22.548 Displacement	12.034	-0.25		-3.52E+04 Shear	1.32E+05 Axial M	-4.60E+04	14.7661 Snd Bending	0.353502
Title	Dist X	Y	Z	Px	Py	Pz N	Mx	My	Mz
e 1 (-Z)	0.5 22,548 Parapet Self Weigh		-0.25		4.88E+04 Shear	-1.66E+05 Axial M	3.78E+03	-132.308 Snd Bending	-7.41E+04
Title	Dist X	Υ	Z	Px	Py	Pz	Mix	My	Mz
e 1 (+Z)	0.5 22.548 3kPa Pedestrian UI		-0.25		-3.81E+04 Shear	8.97E+03 Axial M	-3.25E+03	-24.732 Snd Bending	-0.130875
Title	Dist X	Y	Z	Px	Py	Pz	Mix	Му	Mz
e 1 (-Z)	0.5 22.548 3kPa Patch	12.034	0.118912	71.3406	-1.03E+05 Shear	4.92E+04 Axial M	-3.20E+04 ain Bending	4.53249 Snd Bending	54.8635
Title	Dist X	Y	Z	Px	Py	Pz	Mix	Му	Mz
e 1 (-Z)	0.5 22.548	12.034	0.118912	-49.9459	-4.48E+04	4.82E+04	-3.69E+04	-32.4846	-11.0821
				MGI	2				
	SW			- 1	Shear		ain Bending	Snd Bending	- 1
Title ce 1 (-Z)	Dist X 0.5 22.548	9.902	-0.25	Px	-8.39E+04	Pz 4.48E+05	-1.68E+05	My -17.637	Mz
	Wet Concrete				Shear	Axiai M	ain Bending	Snd Bending	
Title e 1 (-Z)	Dist X 0.5 22.548	9.902	Z -0.25	Px	-2.27E+04	Pz 1.15E+05	Mx -4.28E+04	My -29.3808	Mz
	Displacement				Shear	Axial M	ain Bending	Snd Bending	
Title e 1 (-Z)	Dist X 0.5 22,548	9.902	-0.25	Px	Py 2.91E+04	-8.15E+04	Mx 1.85E+03	My -142,443	Mz
	Parapet Self Weigh	t			Shear	Axial M	ain Bending	Snd Bending	100
Title ce 1 (-Z)	Dist X 0.5 22.548	9.902	-0.25	Px	Py 0	Pz 3.15E+03	Mx -1.17E+03	My -13,4057	Mz
701-	3kPa Pedestrian UI	U		0.	Shear	Axial M	ain Bending	Snd Bending	-22
Title e 1 (-Z)	Dist X 0.5 22.548	9.902	Z -0.25	Px	Py -5.10E+03	Pz 7.64E+04	Mx -2.28E+04	My -14.8793	Mz
	3kPa Patch Dist X	Y	Z	Px	Shear	Axial M Pz	ain Bending Mx	Snd Bending	Mz
Title e 1 (-Z)	0.5 22.548	771718	-0.25	PX	-8.28E+03	4.63E+04	-1.35E+04	My 64.6999	MZ
				-					- 4
	600			MGI		Autor	ale per	Paul Deputies	
Title	Dist X	Y	Z	Px	Shear Py	Axial M Pz	ain Bending Mx	Snd Bending My	Mz
e 1 (-Z)	0.5 22.548	8.531	-0.25	1 177	-7.88E+04	4.34E+05	-1.65E+05	-15.8958	
Title	Wet Concrete Dist X	Y	Z	Px	Shear	Axial M Pz	ain Bending Mx	Snd Bending My	Mz
e 1 (-Z)	0.5 22.548		-0.25	799	-1.38E+04	1.02E+05	-3.98E+04	-21.1523	
Title	Displacement X	Y	Z	Px	Shear	Axial M	ain Bending Mx	Snd Bending My	Mz
e 1 (-Z)	0.5 22.548	8.531	-0.25	-27"	1.16E+04	-3.24E+04	993.383	-141.472	-167
Title	Parapet Self Weigh Dist X	Y	Z	Px	Shear	Axial M	ain Bending Mx	Snd Bending My	Mz
e 1 (-Z)	0.5 22.548	8.531	-0.25	1	0	1.59E+03	-569.628	-5.1544	-
Title	3kPa Pedestrian UI Dist X	OL Y	Z	Px	Shear	Axial M	ain Bending Mx	Snd Bending My	Mz
e 1 (-Z)	0.5 22.548		-0.25	-	-1.51E+04	6.22E+04	-2.09E+04	-18.4001	1000
Title	3kPa Patch Dist X	Y	Z	Px	Shear	Axial M Pz	ain Bending Mx	Snd Bending My	Mz
	0.5 22.548	-			-1.39E+04	5.56E+04	-1.77E+04	48.239	

APPENDIX B – Principal Inspection

AUCKLAND MOTORWAY ALLIANCE

SPECIAL INSPECTION

Old Mangere Bridge

Date: December 2015

Old Mangere Bridge December 2015

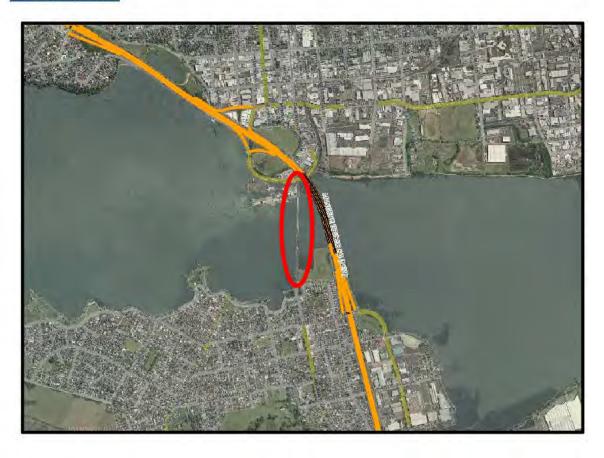
AMA - SPECIAL INSPECTION

Old Mangere Bridge

Report:-		
Prepared By:-	s9(2)(a) Structures Manager	
Reviewed By:-	s9(2)(a) Structures Inspectors	
Authorised By:-	s9(2)(a) Structures Manager	
Report Date:-		

Contents

1.	Bridge Details	4
2.	Location Plan	
3.	Recommendations for maintenance/monitoring/inspections:	5
4.	Bridge Structural Details	7
5.	Bridge Deterioration	7
6.	Principal Inspection Report Details	8
7.	Span 1	
8.	Span 2	11
9.	Intermediate Support 5-8	12
10.	Span 3	13
11.	Span 4	14
12.	Span 5	15
13.		16
14.		17
15.		
16.	Span 7	19
17.	opan o	
18.	N	
19.		
20.	하는 사람들이 되었습니다. 그렇게 되었습니다. 그 그렇게 되었습니다. 그렇게 그렇게 되었습니다. 그렇게 그렇게 되었습니다. 그렇게	
21.	Intermediate Support 29-32	25
22.		
23.		
24.		
25.		
26.	Intermediate Support 45-48	30
27.		
28.		
29.	12 L 111 2 L 112 121 112 121 112 121 121	
30.	Span 15	36
31.		
32.		
33.		
34.	General Views	44



Old Mangere Bridge December 2015

1. Bridge Details

Bridge Name:	Old Mangere
BSN:	
Highway:	SH20
RP:	020-0010/02.54-I
Date of inspection:	17/12/2015
Inspector:	s9(2)(a)

2. Location Plan

Old Mangere Bridge December 2015

3. Recommendations for maintenance/monitoring/inspections:-

HIDI (EXC	DEN PARTS NOT EXAMINED CLUDING FOUNDATION)	COMPONENT					REASON				
ITEM	DESCRIPTION	LOCATION	EST COST	PRIORITY	PRIORITY	QUANTITY	SEVERITY	RISK SCORE	WORKS CATEGORY		
1 2											
3											
5											
Sign	ned	Name L	iam Colem	an		Date	<u> </u>				

ZTRANSPORT Z AGENCY

RISK SEVERITY & PROBABILITY SCORES.

Effect or Defect	Severity	Certain	Likely	Probable	Possible	Unlikely
	Factor	5	4	3	2	1
Catastrophic / unpredictable / undetectable failure, which causes injuries and/ or fatalities	5+	25+	20+	15+	10+	5+
Predictable / detectable failure, which may cause injuries / fatalities	5	25	20	15	10	5
Predictable / detectable failure, leading to road closure	4	20	16	12	8	4
Predictable/detectable deterioration, leading to reduced usage based on assessment results	3	15	12	9	6	3
Further deterioration in condition of structure, leading to higher severity impact in future years.	2	10	8	6	4	2
Further deterioration of structure, leading to increase in eventual repair, cost and public complaints	1	5	4	3	2	1
Nil or Negligible consequences	-1	-5	-4	-3	-2	-1

Priority	Н	High; work should be done during the next financial year to ensure the safety of the public or safeguard structural integrity or avoid a high cost penalty.
	М	Medium; work should be done during the next financial year; postponement carries some cost penalty.
	L	Low; work should be done within the next two financial years.

[HIGHWAYS ENGLAND - BD63/07]

High priority - 'Must be done as soon as possible'.

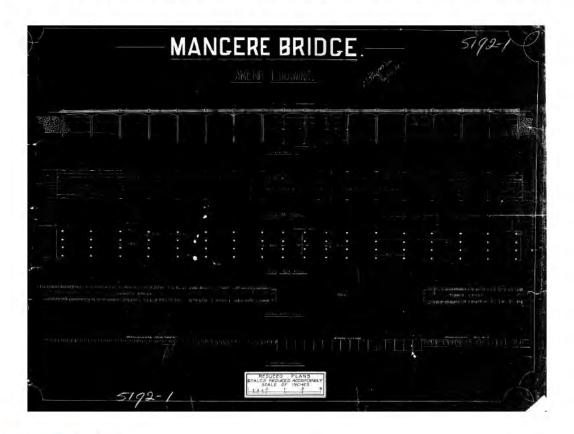
This includes maintenance of any component:

- Which is unsafe to the public.
- · Which has a medium to high risk of failure.
- Which is in very poor condition and requires prompt action.
- Which if not actioned would result in much higher future costs.

Medium priority - 'Preferable to do as soon as possible'.

This includes maintenance that is not a 'high' priority, but which should be done as soon as possible to ensure the structural integrity and safety of the structure is maintained to an appropriate standard.

[NZTA - SM018]



4. Bridge Structural Details

The bridge was constructed circa 1914 and has 17 simply supported reinforced concrete spans which vary from 11.43m to 15.24m.

Each superstructure span comprises 8 precast beams with cast insitu deck slabs. All support piers comprise of driven piles supporting a cast insitu cap beam.

The structure was closed to vehicle live load in 1985 and only accommodates pedestrian and recreational users (the bridge is used extensively as a fishing platform and by recreational cyclists).

5. Bridge Deterioration

The general condition of the bridge has suffered widespread deterioration over the last 100 years. The combination of a severe marine environment and poor concrete quality, with lack of adequate concrete cover has resulted in widespread corrosion of reinforcement and spalling of concrete. Inspections over the last thirty years indicate that this deterioration has been gradual with the worst areas being the interior 6 main beams of each span, the pile cap beams and the cap beam/pile top joints.

In order to reinstate the structural capacities of these critical elements, repairs have been carried out over a number of years. These repairs include:

Installation of external prestressing tendons to the sides of all interior main beams.

Installation of 2 continuous reinforced concrete strips along the full length of the deck surface. Installing steel bracing to support one pier cap.

Installing steel clamps to a number of broken and deteriorated concrete foundation piles.

Other repairs have been carried out when necessary including those in response to 3 known ship impacts.

6. Principal Inspection Report Details

Inspection Details:-

A structure in good condition has a General Inspection (GI) every two years and Principal (Detailed) Inspection (PI) every 6 years in accordance with the NZTA Specification S/6.

Due to the condition of Old Mangere the structure currently receives 4 inspections yearly. A walkover of the structure is carried out and a visual inspection from a boat. A within touching distance / physical inspection of the underside was carried out where access permitted.

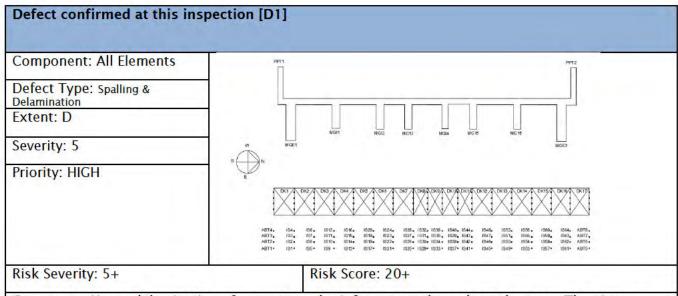
Inspection Comments:-

Overall the structure is in a very poor condition with significant areas of delamination of the concrete and extensive loss of section to the tensile reinforcement. The structure has had a number of boat strikes in the past which has placed excess displacements and deflections on the structure, which has resulted in emergency repairs.

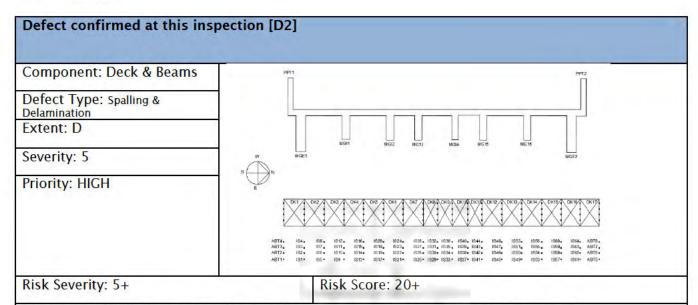
Any areas that are subjected to wetting and drying conditions are generally spongy when struck with a hammers. The majority of previous concrete durability repairs have failed or are brittle sounding when struck with a hammer.

Overall the structure is in a very poor condition and it is very hard to give a full comprehensive catalogue of defects. From a boat inspection there are limitations on how close you can get to some of the elements. Some of the more significant areas of concern were, but are not limited to just these areas are:

- Intermediate Support 5-8 The crosshead beam has a crack the full depth which was instigated
 from a previous bridge strike. The area was subsequently clamped. The clamps have broken and
 are loose when struck with a hammer. The area is generally spongy when struck with a hammer.
 If this section were to fail MGE2 and MGI6 would no longer have effective support under their
 own dead weight.
- 2. Generally on spans 3-9 the longitudinal tensile reinforcement is floating in mid-air and the shear stirrups have completely corroded. The composite behaviour of reinforced concrete is no longer functional and in reality the bars are probably doing very little in the capacity of the structure. At these locations the top slab and the supplementary strengthening slabs are given the structure capacity.
- 3. Intermediate Support 17-20 The crosshead pier under MGE2 has extensive cracking and is showing initial signs of delamination and cracking. Supplementary piles have been introduced in this area to support the cross head beams. If the concrete in this area was to fully crush MGE2 would be floating in mid-air and questionable if it could hold its own self weight in this situation.
- 4. **Intermediate support 21-24** Intermediate support pile 24 is no longer plum following a previous boat strike. There is cracking and delamination of the pile and crosshead at this location.
- 5. Intermediate support 41-44 (Span11/12), 45-48 (12/13) & 49-52(13/14) These 3 intermediate piers are the areas of most concern. There is extensive delamination, cracking and loss of section to the reinforcement. Some of the corner reinforcement on the piles have plastically deformed and buckled. As a result the pile will have little to no tensile capacity and completely relying on the crush strength in the concrete. A number of the piles have extensive cracking which could be a bi product of the deterioration, lack of tensile capacity and initial signs of failure



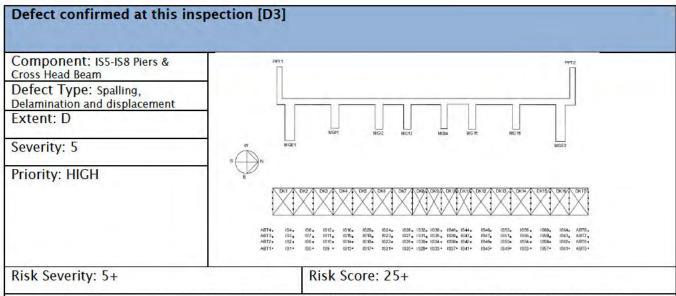
- 6. Span 17 & Abutment There is extensive, delamination and loss of section to the beams. The abutment is pilled and surrounded with a concrete stone mix. There is a vertical crack to the stone concrete surround which will expose the piles behind to the elements. The condition of the piles in both abutments is unknown and are hidden. On the bridge beams there appear to be shear cracking to the ends of the beams. Due to access it is not known if the cracks are a result of delamination or shear induced. The webs of some of the beams appear to show crushing delimitation probably as a result of the external post-tension system.
- 7. **The longitudinal strengthening slabs** added in 2005 has transverse cracking over the support on IS17/20 (span 5/6) and at the point of contra-flexure on span 2. The two main cracks noted are the full width of the deck. The cracks at present are less than 0.3mm in width.


7. Span 1

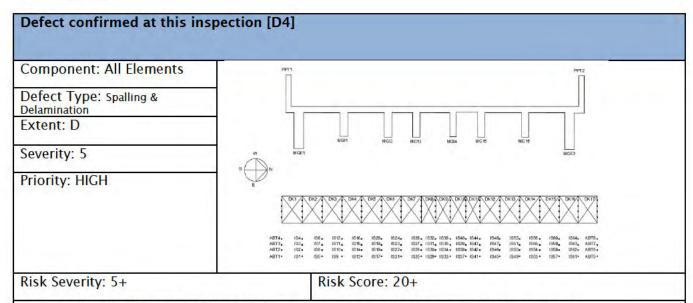
Comments: Heavy delamination of concrete and reinforcement throughout the span. The pictures below show the level of loss of section to the main tensile reinforcement following a strike with a hand held hammer. The main reinforcement has loss in excess of 50% and is no longer bonded to the concrete beams. Generally all the concrete sounded spongey/brittle when struck with a hammer.

8. Span 2

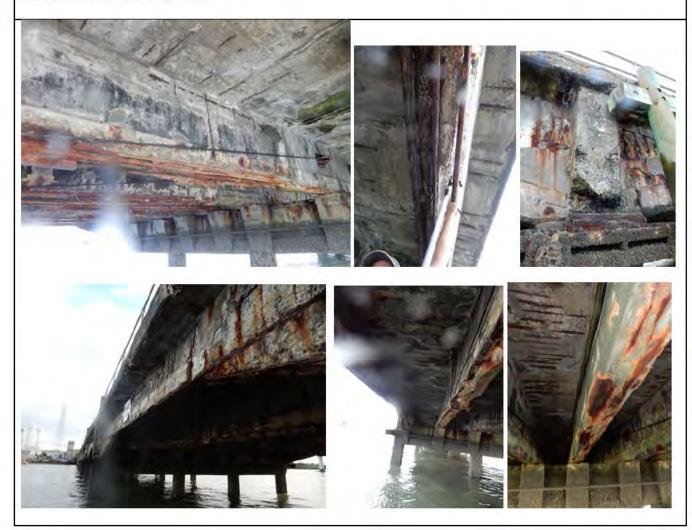
Comments: All the beams are showing signs of delamination and loss of section to the reinforcement. Previous repairs have failed and are hiding the true deterioration of the structure. Black low oxygen corrosion was noted where the concrete broke off the beam. Generally all the concrete sounded spongey/brittle when struck with a hammer.



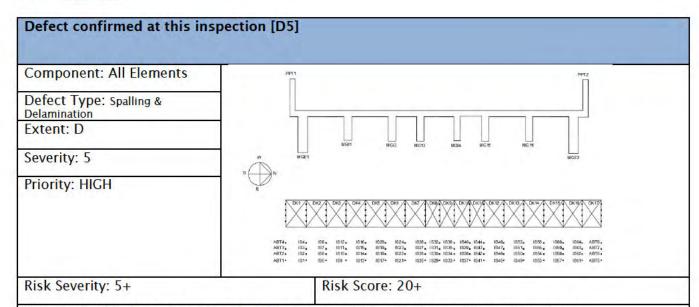
9. Intermediate Support 5-8



Comments: The crosshead beam in-between MGI5 & MGI6 has a crack the full depth. The area was previously clamped but the clamps are loose and no longer functional. The cross head beam above MGE2 is crushed with a number of cracks. Generally all the concrete sounded spongey when struck with a hammer

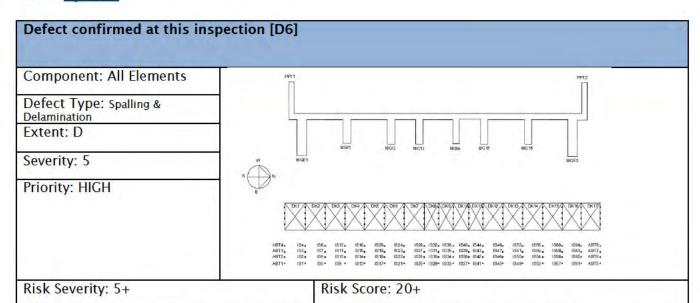


10. Span 3



Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The majority of the beams bottom reinforcement are floating in mid-air with 100% section loss to the shear links

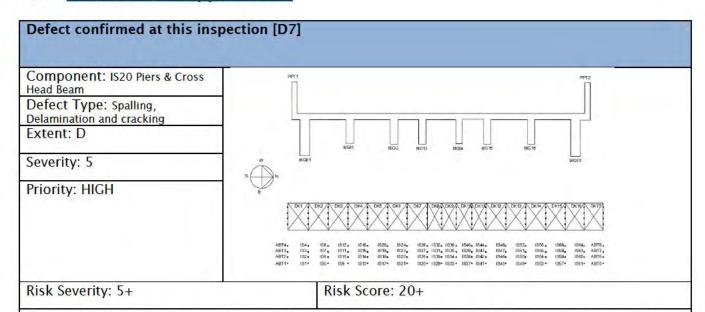
11. Span 4



Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The majority of the beams bottom reinforcement are floating in mid-air with 100% section loss to the shear links

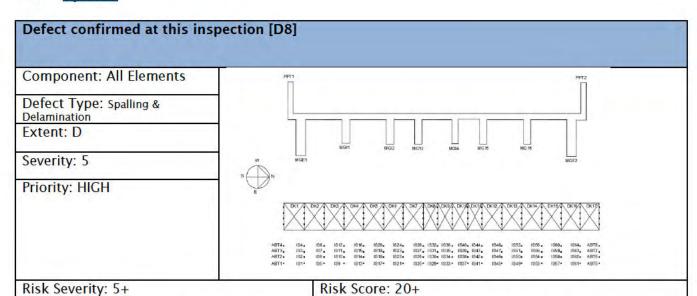
12. Span 5

Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The majority of the beams bottom reinforcement are floating in mid-air with 100% section loss to the shear. On MGE1 a number of the tensile reinforcement bars have broken. The concrete at the ends of the beams are delaminating and crushing.



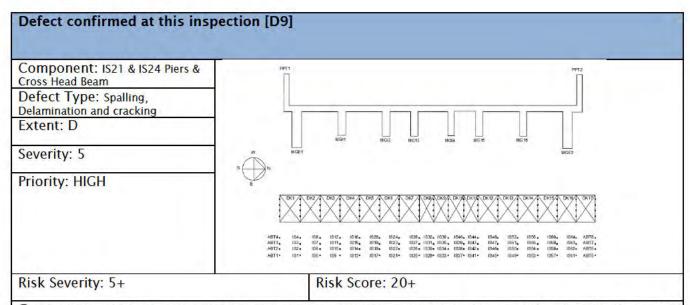
Intermediate Support 17-20 13.

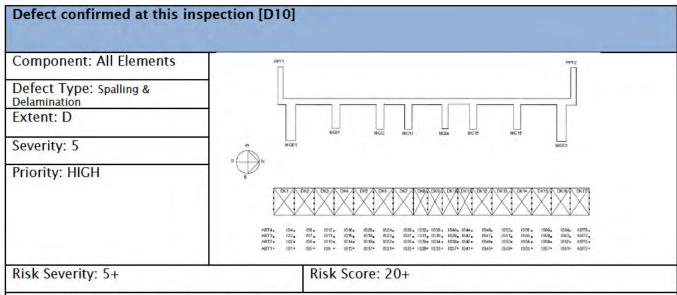
Comments: There is a full depth crack running through the cross head beam under MGE2. It appears there is a crack along the cross head and the top of the pile. A supplementary support pier has been added at this location to strengthen the area. The newer support pile sounds spongey when struck with a hammer but is not showing signs of distress. With the damage to the cross head beam it would be questionable the benefit of the new pier under current load arrangements. The transverse post tensioning will have less of an impact due to the cracked concrete.



14. Span 6

Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The majority of the beams bottom reinforcement are floating in mid-air with 100% section loss to the shear links.

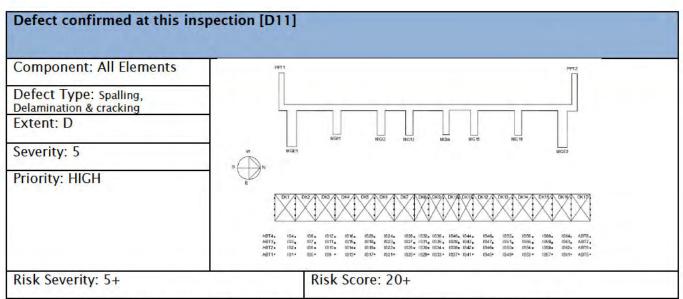


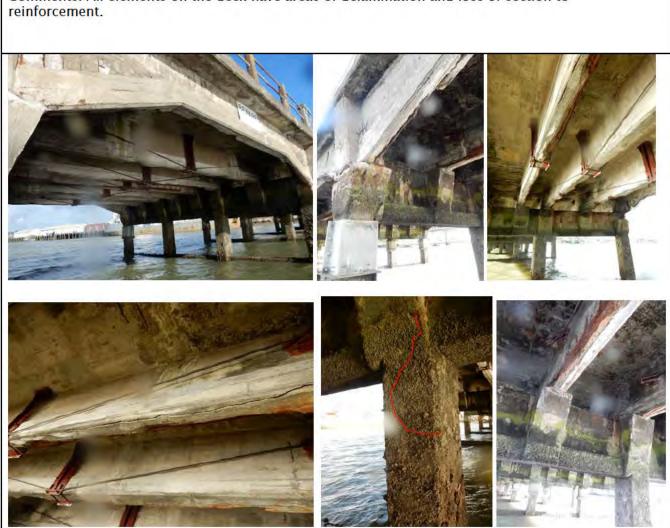

Intermediate Support 21-24 15.

Comments: IS24 is no longer vertical/plum, initially due to a boat impact. There is a large crack the full depth of the cross head. Areas broke loose when struck with a hammer revelling corroded reinforcement. Cracking was also noted on IS21, it is assumed the reinforcement behind is corroded with loss of section.

16. Span 7

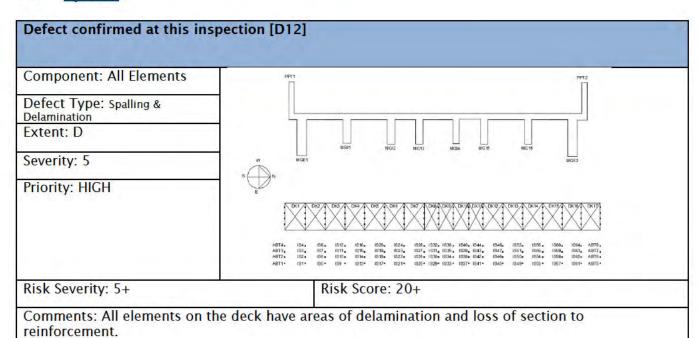
Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The majority of the beams bottom reinforcement are floating in mid-air with 100% section loss to the shear links. The reinforcement in MG1 has completely deteriorated with 100% section loss to a number of bars




Fulton Hogan

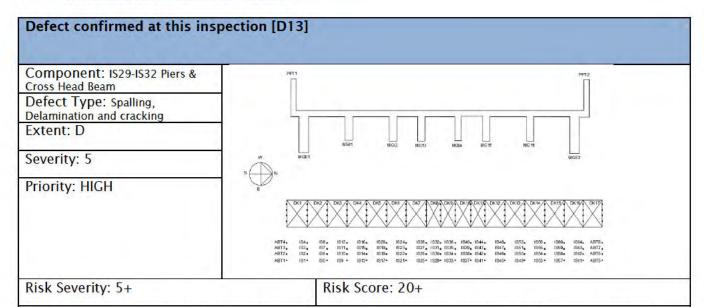
Old Mangere Bridge December 2015

17. Span 8



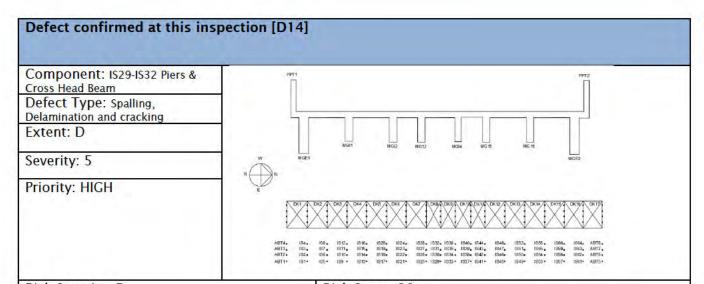
Comments: All elements on the deck have areas of delamination and loss of section to

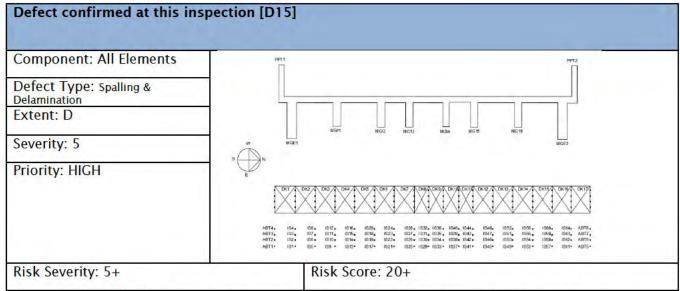
18. Span 9



Intermediate Support 29-32 19.

Comments: There are full depth cracks on the cross head beams under MGE1. There are stepped cracks to the soffit of all the cross beams as a result of delamination and rust jacking.

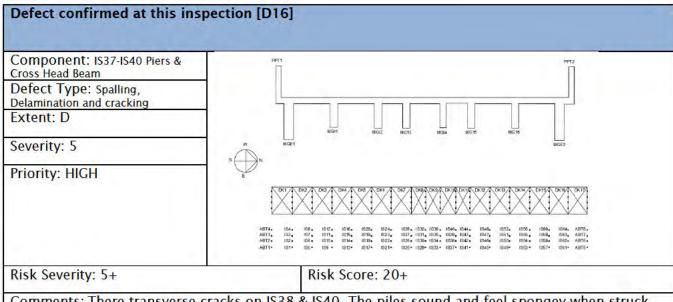




Risk Score: 20+ Risk Severity: 5+

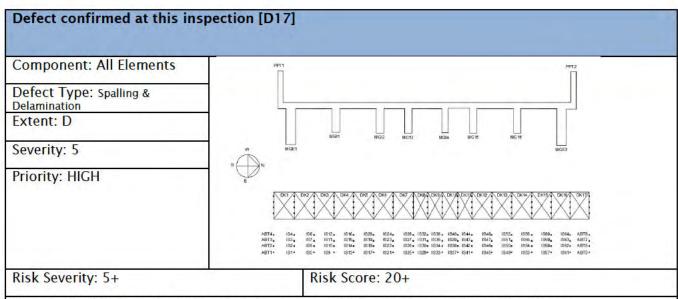
Comments: IS31 was spongey when struck and areas delaminated. There is also transverse cracking to the pile.

20. Span 10

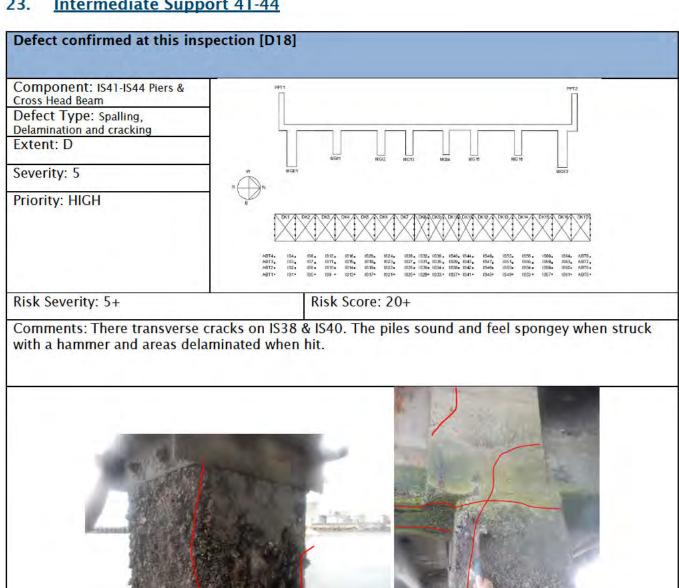


Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The soffit of the deck is a little better in this span compared to the previous spans as it is above the tidal range.

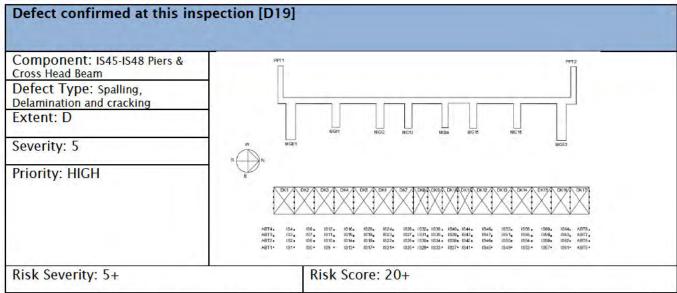
21. Intermediate Support 29-32


Comments: There transverse cracks on IS38 & IS40. The piles sound and feel spongey when struck with a hammer and areas delaminated when hit.

22. Span 11

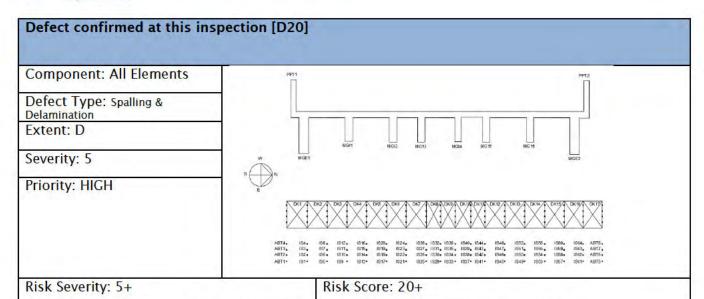


Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The soffit of the deck is a little better in this span compared to the initial spans as it is above the tidal range.


Intermediate Support 41-44 23.

24. Intermediate Support 41-44

Comments: There is extensive cracking and delamination of the cross head beams and the tops of the piles. The concreted delaminated when struck and generally is spongey when hit.

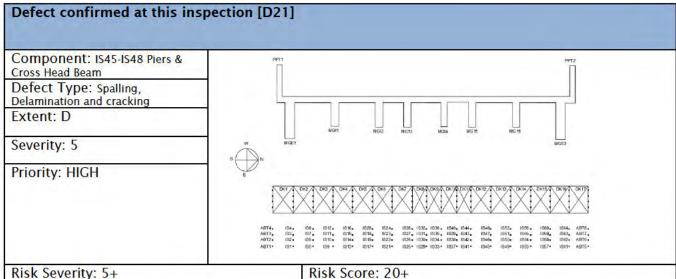


OPUS

Old Mangere Bridge December 2015

25. Span 12

Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The soffit of the deck is a little better in this span compared to the initial spans as it is above the tidal range.



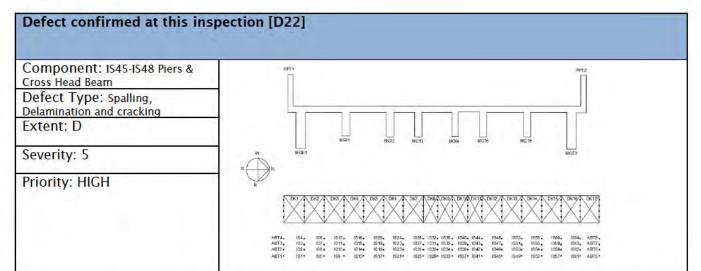
OPUS

Old Mangere Bridge December 2015

Intermediate Support 45-48 26.

Risk Severity: 5+

Comments: There is extensive cracking and delamination of the cross head beams and the tops of the piles. IS46 & IS47 main reinforcement has buckled in the corners there is extensive crush and cracking of the concrete at this location. The cross head is heavily delaminated at this location. The concrete generally is spongey when struck.



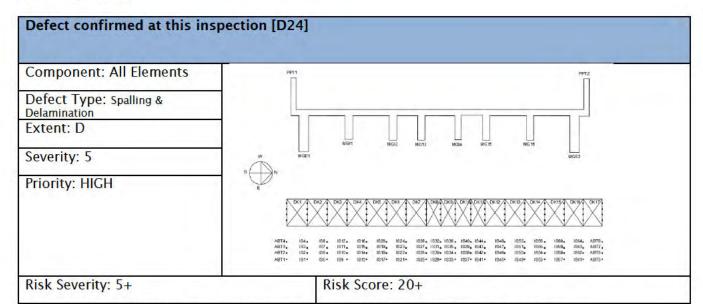
Risk Severity: 5+ Risk Score: 25+

Comments: There is extensive cracking and delamination of the cross head beams and the tops of the piles. IS46 & IS47 main reinforcement has buckled in the corners there is extensive crush and cracking of the concrete at this location. The cross head is heavily delaminated at this location. The concrete generally is spongey when struck. The horizontal strut to pier connection has cacking and very spongy when struck.

BEFORE

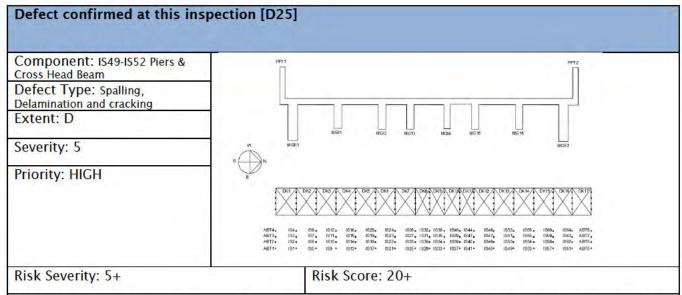
Defect confirmed at this inspection [D23] Component: IS45-IS48 Piers & Cross Head Beam Defect Type: Spalling, Delamination and cracking Extent: D Severity: 5 Priority: HIGH Risk Score: 25+ Risk Severity: 5+

Comments: There is extensive cracking and delamination of the cross head beams and the tops of the piles. IS46 & IS47 main reinforcement has buckled in the corners there is extensive crush and cracking of the concrete at this location. The cross head is heavily delaminated at this location. The

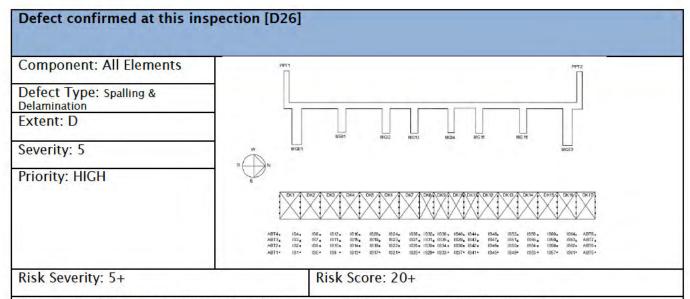

concreted generally is spongey when struck

27. Span 13

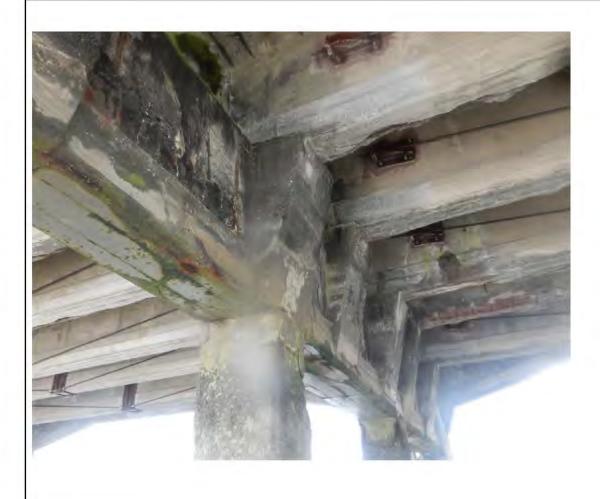
Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The soffit of the deck is a little better in this span compared to the initial spans as it is above the tidal range.



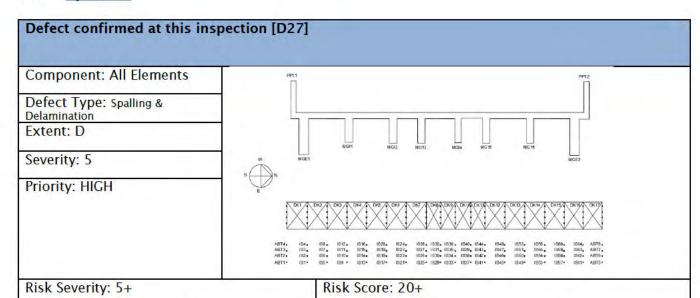
28. Intermediate Support 49-52



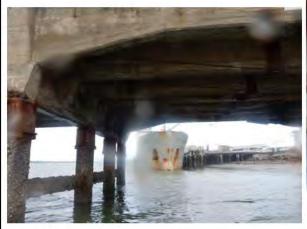
Comments: There is extensive cracking and delamination of the cross head beams and the top of pile 51. The corner reinforcing is buckled and there are transverse cracks across the pile. The concreted generally is spongey when struck.



29. Span 14

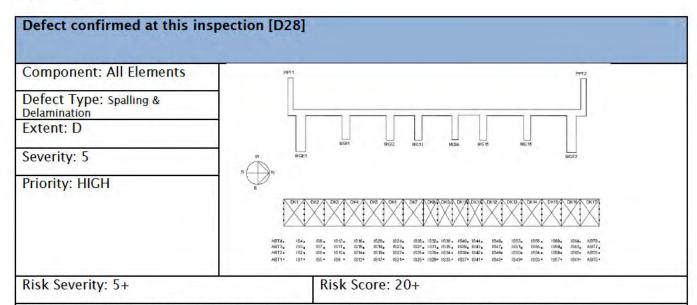


Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The soffit of the deck is a little better in this span compared to the initial spans as it is above the tidal range.



30. Span 15

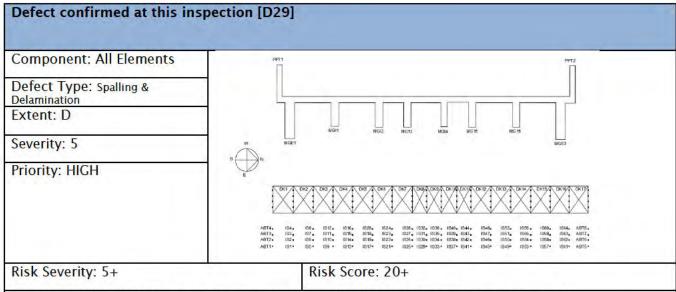
Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The soffit of the deck is a little better in this span compared to the initial spans as it is above the tidal range. The piers have been strapped up with supplementary steels following a boat strike a few years ago.



OPUS

Old Mangere Bridge December 2015

31. Span 16



Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The soffit of the deck is a little better in this span compared to the initial spans as it is above the tidal range. The piers have been strapped up with supplementary steels following a boat strike a few years ago.

32. Span 17

Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. There are fracture to the abutment that surround the piles support at this location. The ends of the beams have heavily delaminated and loss of section to the reinforcement. The bed stones area are, missing, loose or heavily cracked.

Defect confirmed at this inspection [D30] Component: All Elements Defect Type: Spalling & Delamination Extent: D Severity: 5 Priority: HIGH

Risk Severity: 5+ Risk Score: 20+

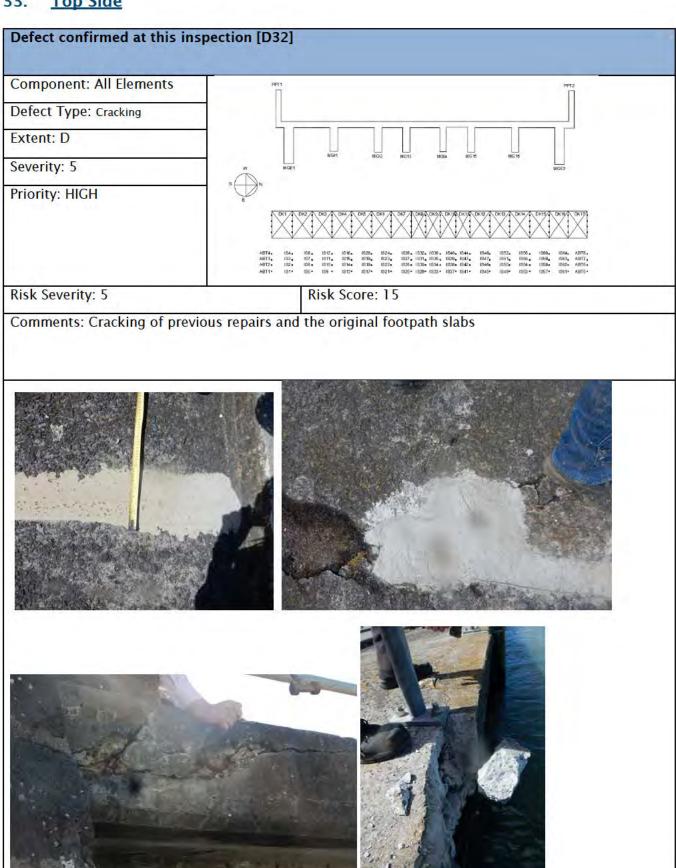
Comments: All elements on the deck have areas of delamination and loss of section to reinforcement. The ends of the beams have heavy delaminated and loss of section to the reinforcement. The previous post-tension system seems to be crushing the concrete and there appears to be shear cracks at the supports.

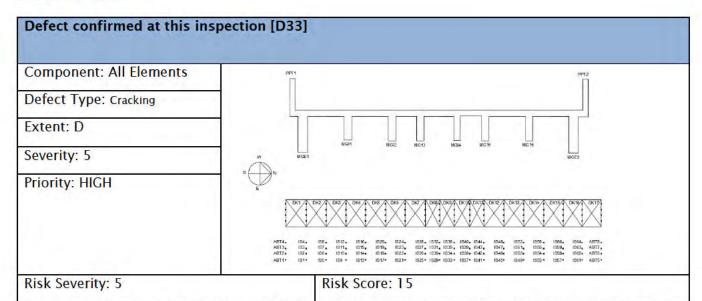
1872, 1835, 1836, 1840, 1844, 1848, 1852, 1877, 1831, 1835, 1839, 1843, 1947, 1851, 1836, 1830, 1834, 1842, 1846, 1850, 1835, 1836, 1837, 1841, 1845, 1846, 1850, 1835, 1835, 1837, 1841, 1845, 1846, 1850, 1835, 1835, 1835, 1837, 1841, 1845, 1846, 1856, 1848, 1835,

Old Mangere Bridge December 2015

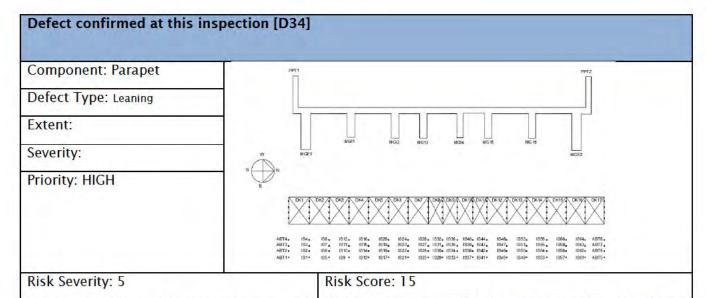
Defect confirmed at this inspection [D31] Component: MGI3 Defect Type: Spalling & Delamination and buckling Extent: D Severity: 5 Priority: HIGH

Risk Severity: 5+ Risk Score: 20+


Comments: MGI3 appears to be buckling over IS51-51 at the end of the beam.

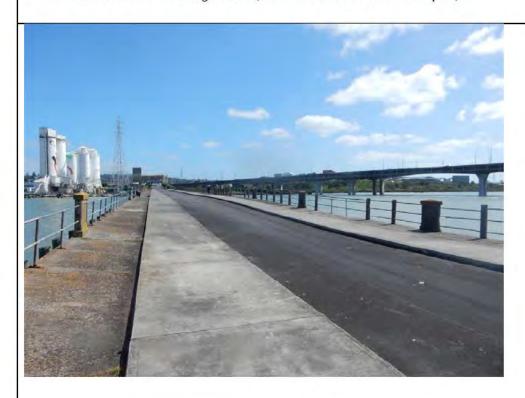


33. Top Side



Comments: Cracking to strengthening slab which appears to go the full width of the bridge, in span 5/6 over the pier and span 2 at the point of contra-flexure

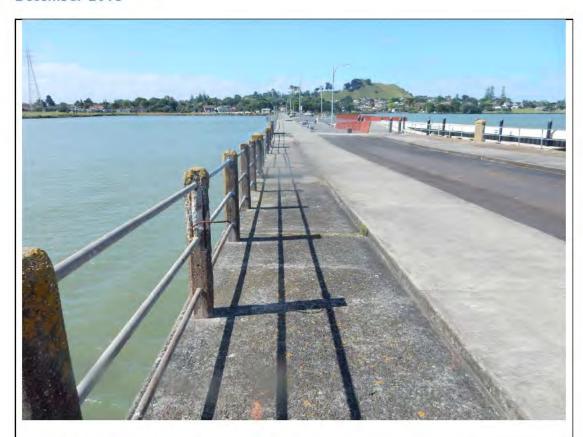
Comments: Parapet leaning on the west side. AMATrac has been raised to replace with new handrail.



General Views 34.

1. General View looking North (Note settlement of south span)

2. General view looking North


3. General View looking East

4. General view looking West (picture taken from walkway on the mainline structure)

				24.0
5	General	MOM	looking	South

6.

-		
-		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		
7.		

 	
 	
 	
12	
0	_
9.	\neg
9.	ī
9.	Ī
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	7.
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	
9.	

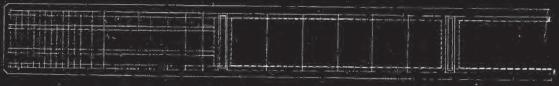
Bridge Inspection Report

NZ TRANSPORT AGENCY			Brio	ge Name:	Highway:	ID:	BCI (av): 44					
waka котані				Nelson	Street Bridge	MIS	NA	BCI (crit): 22				
Bridg	де Ту	rpe:				Report Type :	Principal Inspection					
Marking Code 0 = Not inspected				Deck width	10.553	Extent marking c A = No defect	ode	Severity code 1 = as new				
1 = Satisfactory 2 = Monitor next inspection			Total bridge		B = Not > 5%		2 = early signs of defect					
		next inspection maintenance (provide comment)		Span	1 of 17	C = Moderate; 5 - D = Wide; 20 - 509	3 = moderate defect 4 = severe defect					
		al maintenance (provide comment)		Span length	15.24 Jurvey REQ'D	= E = 50% $= E = 50%$ $= E = 50%$ $= E = 50%$						
Ext :	= Ext	ent ; Sev = Severity	Inspecto		L. Coleman	Next Inspectio	n Type: Feburauy 2016					
		, <i>,</i>	Date :		17/12/15	Date (mth/yr) :						
El Set	eme	nt Description	Mark	Ext/Sev		Brief descrip	tion of defect and comment	s				
	1	Primary load carrying element	S	D4	All Structure in a poor co	ndition and is to t	o be monitored and inspected	3 monthly				
nent	2	T	S	D4	•		o be monitored and inspected					
Elen	3	element(s) Other (incl. deck)	S	D4	All Structure in a poor co	ndition and is to t	o be monitored and inspected	3 monthly				
ure	4	Half/Hinge joints						<u> </u>				
ruct	5	Seismic linkages/Holding Down bolts										
Superstructure Elements	6	Parapet beam or cantilever	S	D4	All Structure in a poor co	ndition and is to t	o be monitored and inspected	3 monthly				
Sup	7	Cross bracing	S	D4			o be monitored and inspected					
	8	Foundations	-	-				•				
	9	Abutments	S	D4	All Structure in a poor co	ndition and is to t	o be monitored and inspected	3 monthly				
arin	10	Head wall	S	D4	All Structure in a poor co	ndition and is to to be monitored and inspected 3 monthly						
Load-bearing Substructure	11	Pier / column	S	D4	All Structure in a poor co	ndition and is to t	o be monitored and inspected	3 monthly				
oad Subs	12	Cross-head / capping beam	S	D4	•		o be monitored and inspected					
- C	13	Bearings	S	E5			o be monitored and inspected	<u> </u>				
	14	Bearing plinth / shelf	S	D4			o be monitored and inspected					
Durability Elements	15	Superstructure drainage	2	B2 B2	·		o be monitored and inspected					
lem	16 17	Substructure drainage Movement / expansion joints		DZ	All Structure in a poor co	nullion and is to t	o be monitored and inspected	3 monuny				
ty E	18	Painting : Superstructure elements										
abili	19	Painting : substructure elements										
Dur	20	Painting : barriers/guardrails										
nts	21	Access / walkways / gantries										
Safety Elements	22	Guardrail / handrail / safety fences	S	D4	All Structure in a poor co	ndition and is to t	o be monitored and inspected	3 monthly				
y El	23	Carriageway surfacing	2	C4	All Structure in a poor co	ndition and is to t	o be monitored and inspected	3 monthly				
afet	24	Footway / verge / footbridge surfacing	2	C3	All Structure in a poor co	ndition and is to t	o be monitored and inspected	3 monthly				
	25	Invert / river bed										
ments	26	Aprons										
Waterway Elen	27	River bed upstream										
way	28	River bed downstream										
ater	29	Scour	2	B2	·		o be monitored and inspected					
	30	River banks	2	A1	•		o be monitored and inspected	•				
ing	31	Revetment / batter slope paving	2	B2			o be monitored and inspected	<u> </u>				
Retaining Elements	32	Wing walls Retaining walls	2	C3	•		 be monitored and inspected be monitored and inspected 	•				
Rei	33	Embankments	2	C3			o be monitored and inspected	<u> </u>				
	35	Approach rails / barriers / walls	2	A1			o be monitored and inspected	-				
	36	Approach adequacy	2	D4			o be monitored and inspected					
Jer	37	Signs										
Other	38	Lighting										
	39	Services										
	40	Appearance	2	D4			o be monitored and inspected					
Subside nce	41	Pavement depression Abutment backfill	2	D4	All Structure in a poor co	ndition and is to t	o be monitored and inspected	3 monthly				
Sub	43	Movement/Cavity present										
		,		0	ı							

APPENDIX C Original Drawings

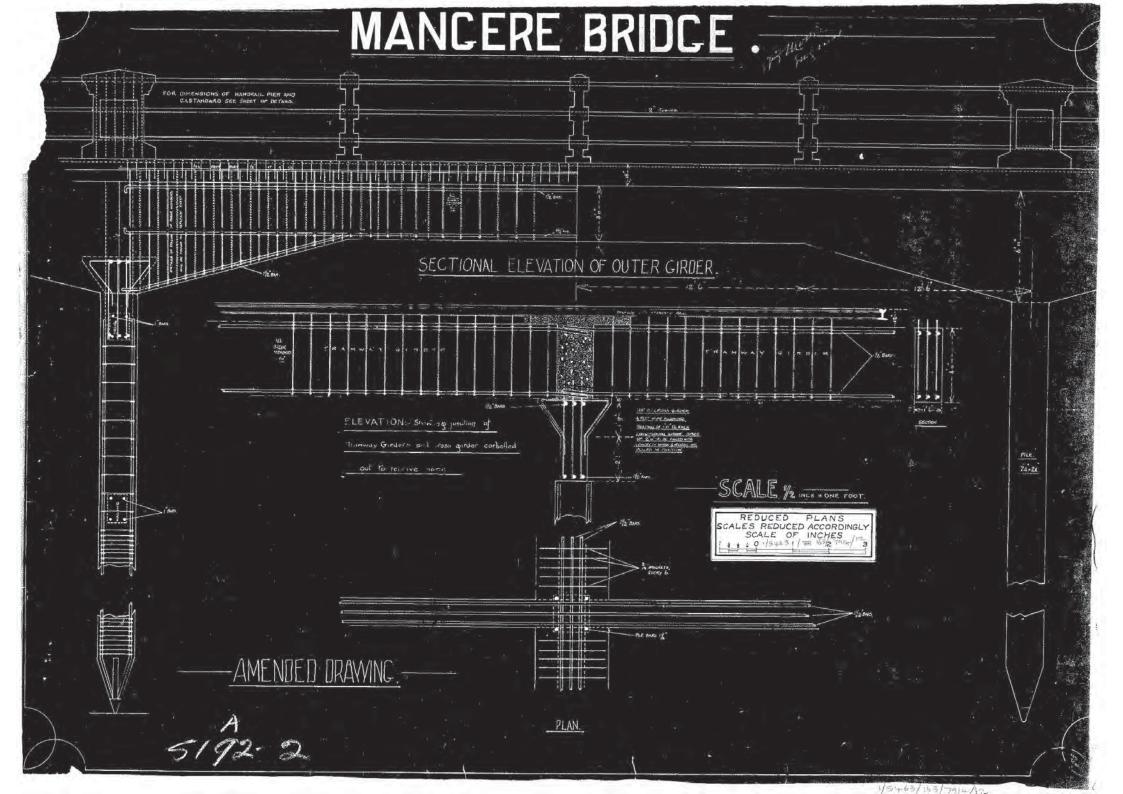
MANCERE BRIDCE ____

PILE DETAIL PLAN ____ SCALE AND I ____ AT WORLD

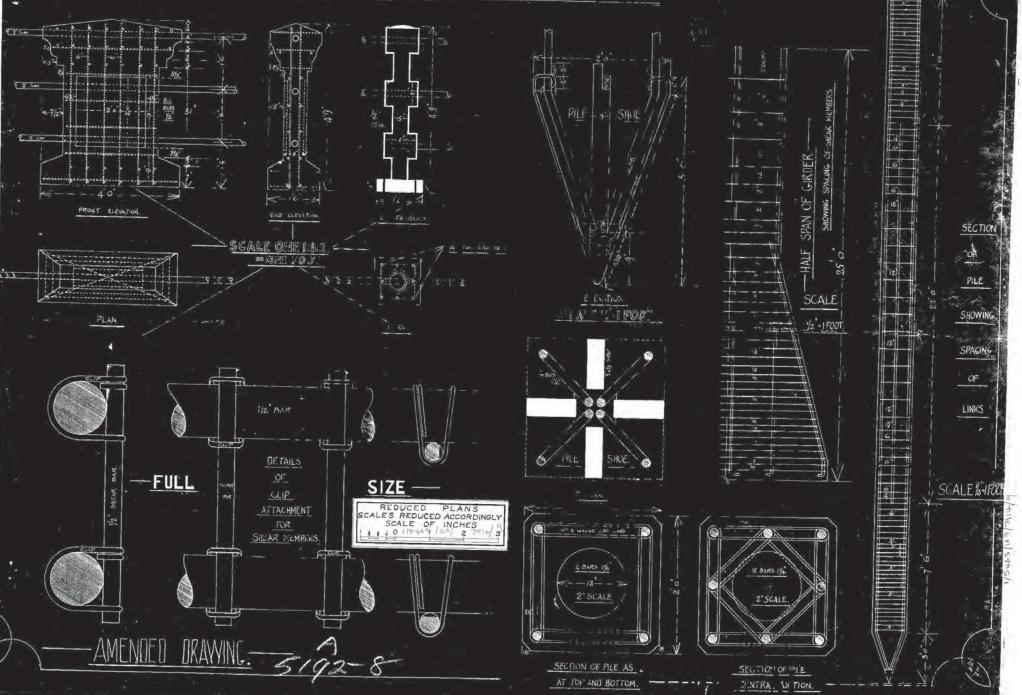


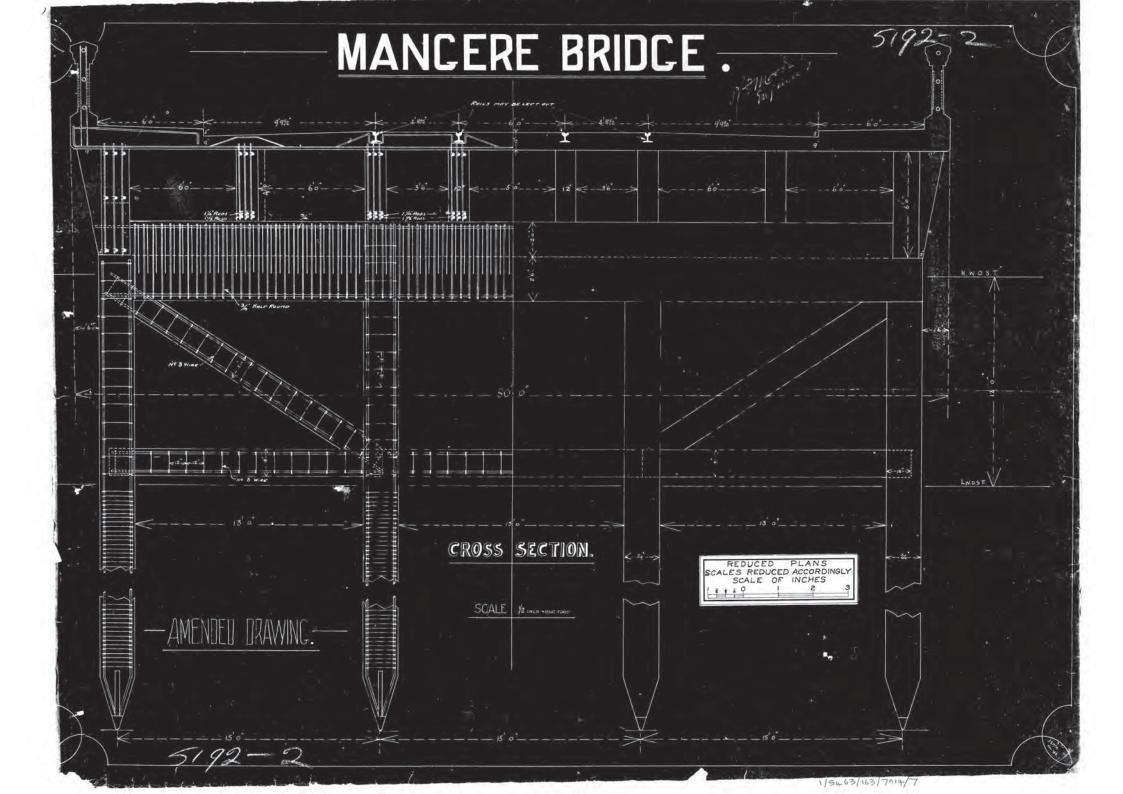
- All corner has Notes - Full Length of pile

All supplementary bears to be half tempth of rule - PILE SECTIONS _____


All hoops to be Nº8 black wire

__ Head of pile Shewing method of reinforcement __ __ 8 extra head bars 1"dia __




REDUCED PLANS
SCALES REDUCED ACCORDINGLY
SCALE OF INCHES
2
3

1/9463/103/7914/10

MANCERE BRIDGE.

MANCERE BRIDGE.

AMENT I DRAWING.

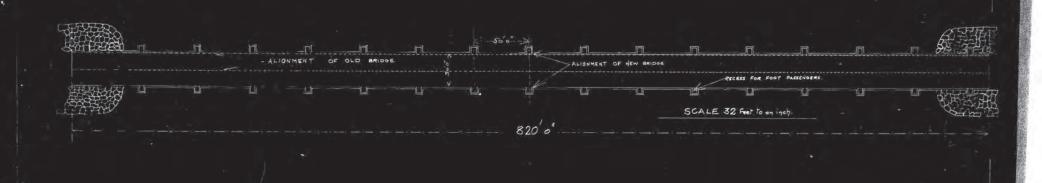
remandablandik) makadanandika kataka ke alabadahan da da da da da da

SCALES REDUCED ACCORDINGLY

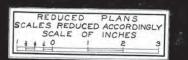
—<u>MANGERE BRIDGE</u>— -PLAN SHEWING LENGTH OF PILES & DEPTH DRIVEN— — 5 cale 30 feet to an Inch.—

·	mark 1	entar 1	en n	wat a	50.0	50.0	30%	32.6	42.6	37-6	50.0	× 50°0 →	500	50 0 1	50'0	50
. 300	30.0	30.0	300	30.0			1							E TIME		
							Low	Waler	Mark	Ordinary	Spring	Tides				- 7
				THE PERSON			.2.0w	water	Jejark.	Uramary	- Spring	77000	906			7
0		0	-				Sec. of				- 7-	1	9	io o	0	13
5	24	2 1	. 0	0.4	0.00	00	100		100	00	18:0	18.0		25	8	5

5192-11


Weight of hammer 4 lons 15 cmt. Final set 4" to blow 6"0 dep.

REDUCED PLANS
SCALES REDUCED ACCORDINGLY
SCALE OF INCHES
13 4 0 1 2 3


MANGERE BRIDGE

AMENDED PLAN SHOWING ALTERATION IN ALIGNMENTS OF OLD-AND-NEW-BRIDGES

Damaros . 1912

BRIDGE.

5192-9

14182/163/7914/